Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/67588
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Weber, Hans Ingo | - |
dc.contributor.author | Balthazar, José Manoel | - |
dc.contributor.author | Belato, Débora | - |
dc.date.accessioned | 2014-05-27T11:21:00Z | - |
dc.date.accessioned | 2016-10-25T18:19:16Z | - |
dc.date.available | 2014-05-27T11:21:00Z | - |
dc.date.available | 2016-10-25T18:19:16Z | - |
dc.date.issued | 2003-12-08 | - |
dc.identifier | http://dx.doi.org/10.4028/www.scientific.net/MSF.440-441.51 | - |
dc.identifier.citation | Materials Science Forum, v. 440-441, p. 51-58. | - |
dc.identifier.issn | 0255-5476 | - |
dc.identifier.uri | http://hdl.handle.net/11449/67588 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/67588 | - |
dc.description.abstract | This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point. | en |
dc.format.extent | 51-58 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Bifurcation | - |
dc.subject | Nonlinear Dynamics | - |
dc.subject | Phase Portrait Geometry | - |
dc.subject | Stability | - |
dc.subject | Phase potrait | - |
dc.subject | Bifurcation (mathematics) | - |
dc.subject | Damping | - |
dc.subject | Differential equations | - |
dc.subject | Mathematical models | - |
dc.subject | Polynomials | - |
dc.subject | System stability | - |
dc.subject | Nonlinear systems | - |
dc.title | Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories | en |
dc.type | outro | - |
dc.contributor.institution | Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Pont. Univ. Catol. do Rio de Janeiro Depto. de Engenharia Mecânica, Rue Marquês de S. Vicente 225, 22453-900 Rio de Janeiro | - |
dc.description.affiliation | Universidade Estadual Paulista UNESP/Rio Claro Inst. de Geocie./Cie. Exatas, Rua 10, 2527, B. Santana, 13500-230 Rio Claro | - |
dc.description.affiliationUnesp | Universidade Estadual Paulista UNESP/Rio Claro Inst. de Geocie./Cie. Exatas, Rua 10, 2527, B. Santana, 13500-230 Rio Claro | - |
dc.identifier.doi | 10.4028/www.scientific.net/MSF.440-441.51 | - |
dc.identifier.wos | WOS:000188594100007 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Materials Science Forum | - |
dc.identifier.scopus | 2-s2.0-0344927093 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.