Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/67886
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorDe Albuquerque, Luiz C.-
dc.contributor.authorTeotonio-Sobrinho, Paulo-
dc.contributor.authorVaidya, Sachindeo-
dc.date.accessioned2014-05-27T11:21:09Z-
dc.date.accessioned2016-10-25T18:19:55Z-
dc.date.available2014-05-27T11:21:09Z-
dc.date.available2016-10-25T18:19:55Z-
dc.date.issued2004-10-01-
dc.identifierhttp://dx.doi.org/10.1088/1126-6708/2004/10/024-
dc.identifier.citationJournal of High Energy Physics, v. 8, n. 10, p. 483-499, 2004.-
dc.identifier.issn1029-8479-
dc.identifier.urihttp://hdl.handle.net/11449/67886-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/67886-
dc.description.abstractWe study a model for dynamical localization of topology using ideas from non-commutative geometry and topology in quantum mechanics. We consider a collection X of N one-dimensional manifolds and the corresponding set of boundary conditions (self-adjoint extensions) of the Dirac operator D. The set of boundary conditions encodes the topology and is parameterized by unitary matrices g. A particular geometry is described by a spectral triple x(g) = (A X, script H sign X, D(g)). We define a partition function for the sum over all g. In this model topology fluctuates but the dimension is kept fixed. We use the spectral principle to obtain an action for the set of boundary conditions. Together with invariance principles the procedure fixes the partition function for fluctuating topologies. The model has one free-parameter β and it is equivalent to a one plaquette gauge theory. We argue that topology becomes localized at β = ∞ for any value of N. Moreover, the system undergoes a third-order phase transition at β = 1 for large-N. We give a topological interpretation of the phase transition by looking how it affects the topology. © SISSA/ISAS 2004.en
dc.format.extent483-499-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectMatrix models-
dc.subjectModels of Quantum Gravity-
dc.subjectNon-Commutative Geometry-
dc.titleQuantum topology change and large-N gauge theoriesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionIndian Institute of Science-
dc.description.affiliationFaculdade de Tecnologia de São Paula DEG UNESP, Praça Fernando Prestes, 30, 01124-060 São Paulo, SP-
dc.description.affiliationUniversidade de São Paulo Instituto de Física DFMA, Caixa Postal 66318, 05315-970, São Paula, SP-
dc.description.affiliationCentre for High Energy Physics Indian Institute of Science, 560012, Bangalore-
dc.description.affiliationUnespFaculdade de Tecnologia de São Paula DEG UNESP, Praça Fernando Prestes, 30, 01124-060 São Paulo, SP-
dc.identifier.doi10.1088/1126-6708/2004/10/024-
dc.identifier.wosWOS:000225641100054-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of High Energy Physics-
dc.identifier.scopus2-s2.0-23044504233-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.