You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/67955
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNespoli, Cristiane-
dc.contributor.authorDo Val, João B. R.-
dc.contributor.authorCáceres, Yusef-
dc.date.accessioned2014-05-27T11:21:11Z-
dc.date.accessioned2016-10-25T18:20:04Z-
dc.date.available2014-05-27T11:21:11Z-
dc.date.available2016-10-25T18:20:04Z-
dc.date.issued2004-11-29-
dc.identifierhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1383686-
dc.identifier.citationProceedings of the American Control Conference, v. 1, p. 703-707.-
dc.identifier.issn0743-1619-
dc.identifier.urihttp://hdl.handle.net/11449/67955-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/67955-
dc.description.abstractThis paper deals with a stochastic optimal control problem involving discrete-time jump Markov linear systems. The jumps or changes between the system operation modes evolve according to an underlying Markov chain. In the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (TN), or the occurrence of a crucial failure event (τΔ), after which the system is brought to a halt for maintenance. In addition, an intermediary mixed case for which T represents the minimum between TN and τΔ is also considered. These stopping times coincide with some of the jump times of the Markov state and the information available allows the reconfiguration of the control action at each jump time, in the form of a linear feedback gain. The solution for the linear quadratic problem with complete Markov state observation is presented. The solution is given in terms of recursions of a set of algebraic Riccati equations (ARE) or a coupled set of algebraic Riccati equation (CARE).en
dc.format.extent703-707-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectDiscrete time control systems-
dc.subjectFeedback-
dc.subjectMarkov processes-
dc.subjectMatrix algebra-
dc.subjectOptimal control systems-
dc.subjectProbability-
dc.subjectRiccati equations-
dc.subjectSet theory-
dc.subjectJump linear quadratic (JLQ) control-
dc.subjectMarkov states-
dc.subjectMarkovian jump linear systems (MJLS)-
dc.subjectLinear control systems-
dc.titleThe LQ control problem for Markovian jumps linear systems with horizon defined by stopping timesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationUNESP Univ. Est. Paulista Fac. de Ciências e Tecnologia, C.P. 467, 19060-900 Pres. Prudente, SP-
dc.description.affiliationUNICAMP Univ. Est. de Campinas Depto. de Telemática, C.P. 6101, 13081-970 Campinas, SP-
dc.description.affiliationUnespUNESP Univ. Est. Paulista Fac. de Ciências e Tecnologia, C.P. 467, 19060-900 Pres. Prudente, SP-
dc.identifier.wosWOS:000224688300116-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of the American Control Conference-
dc.identifier.scopus2-s2.0-8744270440-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.