You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/67983
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDe Oliveira, Maria Cristina Ferreira-
dc.contributor.authorShimabukuro, Milton Hirokazu-
dc.date.accessioned2014-05-27T11:21:12Z-
dc.date.accessioned2016-10-25T18:20:07Z-
dc.date.available2014-05-27T11:21:12Z-
dc.date.available2016-10-25T18:20:07Z-
dc.date.issued2004-12-01-
dc.identifierhttp://dx.doi.org/10.1117/12.539247-
dc.identifier.citationProceedings of SPIE - The International Society for Optical Engineering, v. 5295, p. 212-222.-
dc.identifier.issn0277-786X-
dc.identifier.urihttp://hdl.handle.net/11449/67983-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/67983-
dc.description.abstractInteractive visual representations complement traditional statistical and machine learning techniques for data analysis, allowing users to play a more active role in a knowledge discovery process and making the whole process more understandable. Though visual representations are applicable to several stages of the knowledge discovery process, a common use of visualization is in the initial stages to explore and organize a sometimes unknown and complex data set. In this context, the integrated and coordinated - that is, user actions should be capable of affecting multiple visualizations when desired - use of multiple graphical representations allows data to be observed from several perspectives and offers richer information than isolated representations. In this paper we propose an underlying model for an extensible and adaptable environment that allows independently developed visualization components to be gradually integrated into a user configured knowledge discovery application. Because a major requirement when using multiple visual techniques is the ability to link amongst them, so that user actions executed on a representation propagate to others if desired, the model also allows runtime configuration of coordinated user actions over different visual representations. We illustrate how this environment is being used to assist data exploration and organization in a climate classification problem.en
dc.format.extent212-222-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectInformation Visualization Environment-
dc.subjectKnowledge Discovery-
dc.subjectVisual Data Exploration and Analysis-
dc.subjectData reduction-
dc.subjectImage analysis-
dc.subjectImage quality-
dc.subjectKnowledge acquisition-
dc.subjectLearning systems-
dc.subjectVision-
dc.subjectInformation visualization environment-
dc.subjectKnowledge discovery-
dc.subjectVisual data exploration and analysis-
dc.subjectVisualization tools-
dc.subjectInteractive computer graphics-
dc.titleConceptual model for adaptable and extensible visual data explorationen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationICMC USP, Av. Trabalhador Sao-Carlense, 400, 13560-970, São Carlos-SP-
dc.description.affiliationFCT UNESP, R. Roberto Simonsen, 305, 19060-900, Presidente Prudente-SP-
dc.description.affiliationUnespFCT UNESP, R. Roberto Simonsen, 305, 19060-900, Presidente Prudente-SP-
dc.identifier.doi10.1117/12.539247-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineering-
dc.identifier.scopus2-s2.0-8844238312-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.