You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/68120
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBuzzi, Claudio A.-
dc.contributor.authorLamb, Jeroen S.W.-
dc.date.accessioned2014-05-27T11:21:16Z-
dc.date.accessioned2016-10-25T18:20:26Z-
dc.date.available2014-05-27T11:21:16Z-
dc.date.available2016-10-25T18:20:26Z-
dc.date.issued2005-02-01-
dc.identifierhttp://www2.imperial.ac.uk/~jswlamb/papers/Buzzi_Lamb51_66.pdf-
dc.identifier.citationDiscrete and Continuous Dynamical Systems - Series B, v. 5, n. 1, p. 51-66, 2005.-
dc.identifier.issn1531-3492-
dc.identifier.urihttp://hdl.handle.net/11449/68120-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/68120-
dc.description.abstractWe study the existence of periodic solutions in the neighbourhood of symmetric (partially) elliptic equilibria in purely reversible Hamiltonian vector fields. These are Hamiltonian vector fields with an involutory reversing symmetry R. We contrast the cases where R acts symplectically and anti-symplectically. In case R acts anti-symplectically, generically purely imaginary eigenvalues are isolated, and the equilibrium is contained in a local two-dimensional invariant manifold containing symmetric periodic solutions encircling the equilibrium point. In case R acts symplectically, generically purely imaginary eigenvalues are doubly degenerate, and the equilibrium is contained in two two-dimensional invariant manifolds containing nonsymmetric periodic solutions encircling the equilibrium point. In addition, there exists a three-dimensional invariant surface containing a two-parameter family of symmetric periodic solutions.en
dc.format.extent51-66-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectLiapunov center theorem-
dc.subjectTime-reversal symmetry-
dc.titleReversible Hamiltonian Liapunov center theoremen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionImperial College London-
dc.description.affiliationIBILCE UNESP, Sao Jose do Rio Preto, CEP 15054-000-
dc.description.affiliationDepartment of Mathematics Imperial College London, London SW7 2AZ-
dc.description.affiliationUnespIBILCE UNESP, Sao Jose do Rio Preto, CEP 15054-000-
dc.identifier.wosWOS:000226741800005-
dc.rights.accessRightsAcesso aberto-
dc.identifier.file2-s2.0-15844409937.pdf-
dc.relation.ispartofDiscrete and Continuous Dynamical Systems: Series B-
dc.identifier.scopus2-s2.0-15844409937-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.