Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/68504
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Marana, Aparecido Nilceu | - |
dc.contributor.author | Cavenaghi, Marcos Antônio | - |
dc.contributor.author | Spolon, Roberta | - |
dc.contributor.author | Drumond, F. L. | - |
dc.date.accessioned | 2014-05-27T11:21:41Z | - |
dc.date.accessioned | 2016-10-25T18:21:21Z | - |
dc.date.available | 2014-05-27T11:21:41Z | - |
dc.date.available | 2016-10-25T18:21:21Z | - |
dc.date.issued | 2005-12-01 | - |
dc.identifier | http://dx.doi.org/10.1007/11595755_43 | - |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 3804 LNCS, p. 355-362. | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.issn | 1611-3349 | - |
dc.identifier.uri | http://hdl.handle.net/11449/68504 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/68504 | - |
dc.description.abstract | This paper presents a technique for real-time crowd density estimation based on textures of crowd images. In this technique, the current image from a sequence of input images is classified into a crowd density class. Then, the classification is corrected by a low-pass filter based on the crowd density classification of the last n images of the input sequence. The technique obtained 73.89% of correct classification in a real-time application on a sequence of 9892 crowd images. Distributed processing was used in order to obtain real-time performance. © Springer-Verlag Berlin Heidelberg 2005. | en |
dc.format.extent | 355-362 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Classification (of information) | - |
dc.subject | Distributed computer systems | - |
dc.subject | Image processing | - |
dc.subject | Low pass filters | - |
dc.subject | Real time systems | - |
dc.subject | Crowd density estimation | - |
dc.subject | Input sequence | - |
dc.subject | Real-time performance | - |
dc.subject | Parameter estimation | - |
dc.title | Real-time crowd density estimation using images | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | DCo (Department of Computing) FC (School of Sciences) UNESP (Sao Paulo State University), A.E. Luis Edmundo Carrijo Coube, sn, 17033-360, Bauru, SP | - |
dc.description.affiliationUnesp | DCo (Department of Computing) FC (School of Sciences) UNESP (Sao Paulo State University), A.E. Luis Edmundo Carrijo Coube, sn, 17033-360, Bauru, SP | - |
dc.identifier.doi | 10.1007/11595755_43 | - |
dc.identifier.wos | WOS:000234830800043 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | - |
dc.identifier.scopus | 2-s2.0-33744808549 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.