You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/68504
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarana, Aparecido Nilceu-
dc.contributor.authorCavenaghi, Marcos Antônio-
dc.contributor.authorSpolon, Roberta-
dc.contributor.authorDrumond, F. L.-
dc.date.accessioned2014-05-27T11:21:41Z-
dc.date.accessioned2016-10-25T18:21:21Z-
dc.date.available2014-05-27T11:21:41Z-
dc.date.available2016-10-25T18:21:21Z-
dc.date.issued2005-12-01-
dc.identifierhttp://dx.doi.org/10.1007/11595755_43-
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 3804 LNCS, p. 355-362.-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttp://hdl.handle.net/11449/68504-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/68504-
dc.description.abstractThis paper presents a technique for real-time crowd density estimation based on textures of crowd images. In this technique, the current image from a sequence of input images is classified into a crowd density class. Then, the classification is corrected by a low-pass filter based on the crowd density classification of the last n images of the input sequence. The technique obtained 73.89% of correct classification in a real-time application on a sequence of 9892 crowd images. Distributed processing was used in order to obtain real-time performance. © Springer-Verlag Berlin Heidelberg 2005.en
dc.format.extent355-362-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectClassification (of information)-
dc.subjectDistributed computer systems-
dc.subjectImage processing-
dc.subjectLow pass filters-
dc.subjectReal time systems-
dc.subjectCrowd density estimation-
dc.subjectInput sequence-
dc.subjectReal-time performance-
dc.subjectParameter estimation-
dc.titleReal-time crowd density estimation using imagesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDCo (Department of Computing) FC (School of Sciences) UNESP (Sao Paulo State University), A.E. Luis Edmundo Carrijo Coube, sn, 17033-360, Bauru, SP-
dc.description.affiliationUnespDCo (Department of Computing) FC (School of Sciences) UNESP (Sao Paulo State University), A.E. Luis Edmundo Carrijo Coube, sn, 17033-360, Bauru, SP-
dc.identifier.doi10.1007/11595755_43-
dc.identifier.wosWOS:000234830800043-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
dc.identifier.scopus2-s2.0-33744808549-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.