Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/68552
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rafikov, Marat | - |
dc.contributor.author | Balthazar, José Manoel | - |
dc.date.accessioned | 2014-05-27T11:21:42Z | - |
dc.date.accessioned | 2016-10-25T18:21:27Z | - |
dc.date.available | 2014-05-27T11:21:42Z | - |
dc.date.available | 2016-10-25T18:21:27Z | - |
dc.date.issued | 2005-12-01 | - |
dc.identifier | http://dx.doi.org/10.1115/DETC2005-84998 | - |
dc.identifier.citation | Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005, v. 6 B, p. 867-873. | - |
dc.identifier.uri | http://hdl.handle.net/11449/68552 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/68552 | - |
dc.description.abstract | In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME. | en |
dc.format.extent | 867-873 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Chaos theory | - |
dc.subject | Computer simulation | - |
dc.subject | Dynamic programming | - |
dc.subject | Feedback control | - |
dc.subject | Hamiltonians | - |
dc.subject | Nonlinear control systems | - |
dc.subject | Optimal control systems | - |
dc.subject | Oscillations | - |
dc.subject | Duffing oscillator | - |
dc.subject | Hamilton Jacobi Bellman equation | - |
dc.subject | Optimal control theory | - |
dc.subject | Rössler system | - |
dc.subject | Linear control systems | - |
dc.title | Optimal linear and nonlinear control design for chaotic systems | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Regional do Noroeste do Estado do Rio Grande do Sul | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Departamento de Física, Estatística e Matemática Universidade Regional do Noroeste do Estado do Rio Grande do Sul, C.P. 560, 98700-000, ljui, RS | - |
dc.description.affiliation | Departamento de Estatística, Matemática Aplicada e Computação Universidade Estadual Paulista, C.P. 178, 13500-230, Rio Claro, SP | - |
dc.description.affiliationUnesp | Departamento de Estatística, Matemática Aplicada e Computação Universidade Estadual Paulista, C.P. 178, 13500-230, Rio Claro, SP | - |
dc.identifier.doi | 10.1115/DETC2005-84998 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005 | - |
dc.identifier.scopus | 2-s2.0-33244461989 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.