You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/68552
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRafikov, Marat-
dc.contributor.authorBalthazar, José Manoel-
dc.date.accessioned2014-05-27T11:21:42Z-
dc.date.accessioned2016-10-25T18:21:27Z-
dc.date.available2014-05-27T11:21:42Z-
dc.date.available2016-10-25T18:21:27Z-
dc.date.issued2005-12-01-
dc.identifierhttp://dx.doi.org/10.1115/DETC2005-84998-
dc.identifier.citationProceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005, v. 6 B, p. 867-873.-
dc.identifier.urihttp://hdl.handle.net/11449/68552-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/68552-
dc.description.abstractIn this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.en
dc.format.extent867-873-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectChaos theory-
dc.subjectComputer simulation-
dc.subjectDynamic programming-
dc.subjectFeedback control-
dc.subjectHamiltonians-
dc.subjectNonlinear control systems-
dc.subjectOptimal control systems-
dc.subjectOscillations-
dc.subjectDuffing oscillator-
dc.subjectHamilton Jacobi Bellman equation-
dc.subjectOptimal control theory-
dc.subjectRössler system-
dc.subjectLinear control systems-
dc.titleOptimal linear and nonlinear control design for chaotic systemsen
dc.typeoutro-
dc.contributor.institutionUniversidade Regional do Noroeste do Estado do Rio Grande do Sul-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartamento de Física, Estatística e Matemática Universidade Regional do Noroeste do Estado do Rio Grande do Sul, C.P. 560, 98700-000, ljui, RS-
dc.description.affiliationDepartamento de Estatística, Matemática Aplicada e Computação Universidade Estadual Paulista, C.P. 178, 13500-230, Rio Claro, SP-
dc.description.affiliationUnespDepartamento de Estatística, Matemática Aplicada e Computação Universidade Estadual Paulista, C.P. 178, 13500-230, Rio Claro, SP-
dc.identifier.doi10.1115/DETC2005-84998-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005-
dc.identifier.scopus2-s2.0-33244461989-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.