Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/68593
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | De Alcantara, N. P. | - |
dc.contributor.author | Gasparini, M. E L | - |
dc.date.accessioned | 2014-05-27T11:21:43Z | - |
dc.date.accessioned | 2016-10-25T18:21:33Z | - |
dc.date.available | 2014-05-27T11:21:43Z | - |
dc.date.available | 2016-10-25T18:21:33Z | - |
dc.date.issued | 2005-12-01 | - |
dc.identifier | http://dx.doi.org/10.2529/PIERS041210092825 | - |
dc.identifier.citation | PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings, p. 428-431. | - |
dc.identifier.uri | http://hdl.handle.net/11449/68593 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/68593 | - |
dc.description.abstract | This work proposes a methodology for non destructive testing (NDT) of reinforced concrete structures, using superficial magnetic fields and artificial neural networks, in order to identify the size and position of steel bars, embedded into the concrete. For the purposes of this paper, magnetic induction curves were obtained by using a finite element program. Perceptron Multilayered (PML) ANNs, with Levemberg-Marquardt training algorithm were used. The results presented very good agreement with the expect ones, encouraging the development of real systems based upon the proposed methodology. | en |
dc.format.extent | 428-431 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Backpropagation | - |
dc.subject | Bars (metal) | - |
dc.subject | Building materials | - |
dc.subject | Composite beams and girders | - |
dc.subject | Concrete buildings | - |
dc.subject | Concrete construction | - |
dc.subject | Concrete testing | - |
dc.subject | Electric fault location | - |
dc.subject | Ketones | - |
dc.subject | Magnetic field measurement | - |
dc.subject | Magnetic fields | - |
dc.subject | Nondestructive examination | - |
dc.subject | Piers | - |
dc.subject | Reinforced concrete | - |
dc.subject | Steel | - |
dc.subject | Steel testing | - |
dc.subject | Artificial neural networks | - |
dc.subject | Finite element programs | - |
dc.subject | Magnetic inductions | - |
dc.subject | Multilayered | - |
dc.subject | Non destructive testing | - |
dc.subject | Perceptron | - |
dc.subject | Real systems | - |
dc.subject | Reinforced concrete structures | - |
dc.subject | Steel bars | - |
dc.subject | Training algorithms | - |
dc.subject | Neural networks | - |
dc.title | Steel bars identification in reinforced concrete structures by using ANN and magnetic fields | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | São Paulo State University | - |
dc.description.affiliationUnesp | São Paulo State University | - |
dc.identifier.doi | 10.2529/PIERS041210092825 | - |
dc.rights.accessRights | Acesso aberto | - |
dc.identifier.file | 2-s2.0-47949091143.pdf | - |
dc.relation.ispartof | PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings | - |
dc.identifier.scopus | 2-s2.0-47949091143 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.