You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/68898
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTelis, V. R. Nicoletti-
dc.contributor.authorSobral, P. J. Do Amaral-
dc.contributor.authorTelis-Romero, J.-
dc.date.accessioned2014-05-27T11:21:52Z-
dc.date.accessioned2016-10-25T18:22:13Z-
dc.date.available2014-05-27T11:21:52Z-
dc.date.available2016-10-25T18:22:13Z-
dc.date.issued2006-06-01-
dc.identifierhttp://dx.doi.org/10.1177/1082013206065953-
dc.identifier.citationFood Science and Technology International, v. 12, n. 3, p. 181-187, 2006.-
dc.identifier.issn1082-0132-
dc.identifier.issn1532-1738-
dc.identifier.urihttp://hdl.handle.net/11449/68898-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/68898-
dc.description.abstractDifferential scanning calorimetry (DSC) was used to determine phase transitions of freeze-dried plums. Samples at low and intermediate moisture contents, were conditioned by adsorption at various water activities (0.11≤a w≤0.90) at 25°C, whereas in the high moisture content region (a w>0.90) samples were obtained by direct water addition, with the resulting sorption isotherm being well described by the Guggenheim-Anderson-deBoer (GAB) model. Freeze-dried samples of separated plum skin and pulp were also analysed. At a w≤0.75, two glass transitions were visible, with the glass transition temperature (T g) decreasing with increasing a w due to the water plasticising effect. The first T g was attributed to the matrix formed by sugars and water. The second one, less visible and less plasticised by water, was probably due to macromolecules of the fruit pulp. The Gordon-Taylor model represented satisfactorily the matrix glass transition curve for a w≤0.90. In the higher moisture content range T g remained practically constant around T g′ (-57.5°C). Analysis of the glass transition curve and the sorption isotherm indicated that stability at a temperature of 25°C, would be attained by freeze dried plum at a water activity of 0.04, corresponding to a moisture content of 12.9% (dry basis). © 2006 SAGE Publications.en
dc.format.extent181-187-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectDifferential scanning calorimetry-
dc.subjectGlass transition-
dc.subjectIsotherms-
dc.subjectMoisture-
dc.subjectSorption-
dc.subjectPlasticising effect-
dc.subjectPlum-
dc.subjectSorption isotherm-
dc.subjectFruits-
dc.subjectPrunus domestica-
dc.titleSorption isotherm, glass transitions and state diagram for freeze-dried plum skin and pulpen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.description.affiliationUNESP - Universidade Estadual Paulista Departamento de Engenharia e Tecnologia de Alimentos, 15054-000, Sao Jose do Rio Preto, SP-
dc.description.affiliationUSP - Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, 13630-000, Pirassununga, SP-
dc.description.affiliationUnespUNESP - Universidade Estadual Paulista Departamento de Engenharia e Tecnologia de Alimentos, 15054-000, Sao Jose do Rio Preto, SP-
dc.identifier.doi10.1177/1082013206065953-
dc.identifier.wosWOS:000237887300001-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofFood Science and Technology International-
dc.identifier.scopus2-s2.0-33744768641-
dc.identifier.orcid0000-0002-2553-4629pt
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.