You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/69001
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBailey, M. A.-
dc.contributor.authorCantone, A.-
dc.contributor.authorYan, Q.-
dc.contributor.authorMacGregor, G. G.-
dc.contributor.authorLeng, Q.-
dc.contributor.authorAmorim, J. B O-
dc.contributor.authorWang, T.-
dc.contributor.authorHebert, S. C.-
dc.contributor.authorGiebisch, G.-
dc.contributor.authorMalnic, G.-
dc.date.accessioned2014-05-27T11:21:55Z-
dc.date.accessioned2016-10-25T18:22:28Z-
dc.date.available2014-05-27T11:21:55Z-
dc.date.available2016-10-25T18:22:28Z-
dc.date.issued2006-07-12-
dc.identifierhttp://dx.doi.org/10.1038/sj.ki.5000388-
dc.identifier.citationKidney International, v. 70, n. 1, p. 51-59, 2006.-
dc.identifier.issn0085-2538-
dc.identifier.issn1523-1755-
dc.identifier.urihttp://hdl.handle.net/11449/69001-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/69001-
dc.description.abstractType II Bartter's syndrome is a hereditary hypokalemic renal salt-wasting disorder caused by mutations in the ROMK channel (Kir1.1; Kcnj1), mediating potassium recycling in the thick ascending limb of Henle's loop (TAL) and potassium secretion in the distal tubule and cortical collecting duct (CCT). Newborns with Type II Bartter are transiently hyperkalemic, consistent with loss of ROMK channel function in potassium secretion in distal convoluted tubule and CCT. Yet, these infants rapidly develop persistent hypokalemia owing to increased renal potassium excretion mediated by unknown mechanisms. Here, we used free-flow micropuncture and stationary microperfusion of the late distal tubule to explore the mechanism of renal potassium wasting in the Romk-deficient, Type II Bartter's mouse. We show that potassium absorption in the loop of Henle is reduced in Romk-deficient mice and can account for a significant fraction of renal potassium loss. In addition, we show that iberiotoxin (IBTX)-sensitive, flow-stimulated maxi-K channels account for sustained potassium secretion in the late distal tubule, despite loss of ROMK function. IBTX-sensitive potassium secretion is also increased in high-potassium-adapted wild-type mice. Thus, renal potassium wasting in Type II Bartter is due to both reduced reabsorption in the TAL and K secretion by max-K channels in the late distal tubule. © 2006 International Society of Nephrology.en
dc.format.extent51-59-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectIberiotoxin-
dc.subjectMaxi-K channel-
dc.subjectMicroperfusion-
dc.subjectMicropuncture-
dc.subjectPotassium adaptation-
dc.subjectiberiotoxin-
dc.subjectpotassium-
dc.subjectpotassium channel-
dc.subjectpotassium channel Kir1.1-
dc.subjectprotein kcnj1-
dc.subjectunclassified drug-
dc.subjectanimal cell-
dc.subjectanimal experiment-
dc.subjectanimal model-
dc.subjectanimal tissue-
dc.subjectBartter syndrome-
dc.subjectcontrolled study-
dc.subjectflow measurement-
dc.subjectgene mutation-
dc.subjectgenetic disorder-
dc.subjectHenle loop-
dc.subjecthigh potassium intake-
dc.subjecthypokalemia-
dc.subjectkidney distal tubule-
dc.subjectkidney tubule absorption-
dc.subjectmouse-
dc.subjectnonhuman-
dc.subjectpotassium excretion-
dc.subjectpotassium transport-
dc.subjectpriority journal-
dc.subjectsalt losing nephritis-
dc.subjectwild type-
dc.subjectAdaptation, Physiological-
dc.subjectAnimals-
dc.subjectBartter Syndrome-
dc.subjectBiological Transport-
dc.subjectDiet-
dc.subjectDisease Models, Animal-
dc.subjectHypokalemia-
dc.subjectKidney Tubules, Distal-
dc.subjectLarge-Conductance Calcium-Activated Potassium Channels-
dc.subjectLoop of Henle-
dc.subjectMice-
dc.subjectMice, Mutant Strains-
dc.subjectPeptides-
dc.subjectPotassium-
dc.subjectPotassium Channels, Inwardly Rectifying-
dc.subjectPotassium, Dietary-
dc.titleMaxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter's syndrome and in adaptation to a high-K dieten
dc.typeoutro-
dc.contributor.institutionSchool of Medicine-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversity of Edinburgh-
dc.contributor.institutionEdificio 17 Piano Terra-
dc.contributor.institutionUniversity of Pittsburgh-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionSHM B147-
dc.description.affiliationDepartment of Cellular and Molecular Physiology Yale University School of Medicine, New Haven, CT-
dc.description.affiliationDepartment of Physiology University of Sao Paulo, Sao Paulo-
dc.description.affiliationMolecular Physiology Queens Medical Research Institute University of Edinburgh, Edinburgh-
dc.description.affiliationDipartimento di Nephrologia Pediatrica Secunda Universita' degli Studi di Napoli Edificio 17 Piano Terra, Napoli-
dc.description.affiliationDepartment of Cell Biology and Physiology University of Pittsburgh, Pittsburgh, PA-
dc.description.affiliationDepartment of Basic Sciences Fac. Odontologia S Jose' Dos Campos Unesp-
dc.description.affiliationDepartment of Cellular and Molecular Physiology Yale University School of Medicine SHM B147, 333 Cedar Street, New Haven, CT-
dc.description.affiliationUnespDepartment of Basic Sciences Fac. Odontologia S Jose' Dos Campos Unesp-
dc.identifier.doi10.1038/sj.ki.5000388-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofKidney International-
dc.identifier.scopus2-s2.0-33745683633-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.