You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/69266
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilvestre, Miriam Rodrigues-
dc.contributor.authorLing, Lee Luan-
dc.date.accessioned2014-05-27T11:22:03Z-
dc.date.accessioned2016-10-25T18:23:02Z-
dc.date.available2014-05-27T11:22:03Z-
dc.date.available2016-10-25T18:23:02Z-
dc.date.issued2006-12-01-
dc.identifierhttp://dx.doi.org/10.1109/TLA.2006.4472121-
dc.identifier.citationIEEE Latin America Transactions, v. 4, n. 4, p. 249-256, 2006.-
dc.identifier.issn1548-0992-
dc.identifier.urihttp://hdl.handle.net/11449/69266-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/69266-
dc.description.abstractThere are several papers on pruning methods in the artificial neural networks area. However, with rare exceptions, none of them presents an appropriate statistical evaluation of such methods. In this article, we proved statistically the ability of some methods to reduce the number of neurons of the hidden layer of a multilayer perceptron neural network (MLP), and to maintain the same landing of classification error of the initial net. They are evaluated seven pruning methods. The experimental investigation was accomplished on five groups of generated data and in two groups of real data. Three variables were accompanied in the study: apparent classification error rate in the test group (REA); number of hidden neurons, obtained after the application of the pruning method; and number of training/retraining epochs, to evaluate the computational effort. The non-parametric Friedman's test was used to do the statistical analysis.en
dc.format.extent249-256-
dc.language.isopor-
dc.sourceScopus-
dc.subjectArtificial Neural Network-
dc.subjectClassification error rate-
dc.subjectClassification errors-
dc.subjectComputational effort-
dc.subjectExperimental investigations-
dc.subjectHidden layers-
dc.subjectHidden neurons-
dc.subjectIntermedia-
dc.subjectMLP neural networks-
dc.subjectMultilayer perceptron neural networks-
dc.subjectNon-parametric-
dc.subjectPruning methods-
dc.subjectStatistical analysis-
dc.subjectStatistical evaluation-
dc.subjectFunction evaluation-
dc.subjectNeural networks-
dc.titleAvaliação estatística de métodos de poda aplicados em neurônios intermediários da rede neural MLPpt
dc.title.alternativeStatistical evaluation of pruning methods applied in hidden neurons of the MLP neural networken
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationDepartamento de Matemática, Estatística e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, CEP 19060-900-
dc.description.affiliationDepartamento de Comunicações Faculdade de Engenharia Elétrica e Computação Universidade Estadual de Campinas (UNICAMP), CEP 13083-970-
dc.description.affiliationUnespDepartamento de Matemática, Estatística e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, CEP 19060-900-
dc.identifier.doi10.1109/TLA.2006.4472121-
dc.rights.accessRightsAcesso aberto-
dc.identifier.file2-s2.0-77958181102.pdf-
dc.relation.ispartofIEEE Latin America Transactions-
dc.identifier.scopus2-s2.0-77958181102-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.