You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/69409
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFonseca, Tiago C.-
dc.contributor.authorMendes, José Ricardo P.-
dc.contributor.authorSerapião, Adriane B. S.-
dc.contributor.authorGuilherme, Ivan R.-
dc.date.accessioned2014-05-27T11:22:20Z-
dc.date.accessioned2016-10-25T18:23:21Z-
dc.date.available2014-05-27T11:22:20Z-
dc.date.available2016-10-25T18:23:21Z-
dc.date.issued2006-12-01-
dc.identifier.citationProceedings of the 2nd IASTED International Conference on Computational Intelligence, CI 2006, p. 152-157.-
dc.identifier.urihttp://hdl.handle.net/11449/69409-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/69409-
dc.description.abstractBit performance prediction has been a challenging problem for the petroleum industry. It is essential in cost reduction associated with well planning and drilling performance prediction, especially when rigs leasing rates tend to follow the projects-demand and barrel-price rises. A methodology to model and predict one of the drilling bit performance evaluator, the Rate of Penetration (ROP), is presented herein. As the parameters affecting the ROP are complex and their relationship not easily modeled, the application of a Neural Network is suggested. In the present work, a dynamic neural network, based on the Auto-Regressive with Extra Input Signals model, or ARX model, is used to approach the ROP modeling problem. The network was applied to a real oil offshore field data set, consisted of information from seven wells drilled with an equal-diameter bit.en
dc.format.extent152-157-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectARX model-
dc.subjectDrilling performance-
dc.subjectNeural networks-
dc.subjectPetroleum wells drilling-
dc.subjectRate of penetration-
dc.subjectArtificial intelligence-
dc.subjectDrilling-
dc.subjectForecasting-
dc.subjectImage classification-
dc.subjectIntelligent control-
dc.subjectOffshore oil fields-
dc.subjectOffshore oil wells-
dc.subjectOil well drilling-
dc.subjectOil well production-
dc.subjectOil wells-
dc.subjectPetroleum industry-
dc.subjectPetroleum refineries-
dc.subjectVegetation-
dc.subjectVoltage control-
dc.subjectArx models-
dc.subjectBit performances-
dc.subjectChallenging problems-
dc.subjectDrilling bits-
dc.subjectDrilling performances-
dc.subjectDynamic Neural networks-
dc.subjectInput signals-
dc.subjectModeling problems-
dc.subjectOffshore fields-
dc.subjectPetroleum wells-
dc.subjectPrice rises-
dc.subjectRate of penetrations-
dc.subjectWell planning-
dc.subjectWell drilling-
dc.titleApplication of ARX neural networks to model the rate of penetration of petroleum wells drillingen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNICAMP/FEM/DEP, C.P. 6052, Campinas, São Paulo-
dc.description.affiliationDEMAC/IGCE/UNESP, C.P. 178, Rio Claro, São Paulo-
dc.description.affiliationUnespDEMAC/IGCE/UNESP, C.P. 178, Rio Claro, São Paulo-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of the 2nd IASTED International Conference on Computational Intelligence, CI 2006-
dc.identifier.scopus2-s2.0-56349150914-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.