You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/69494
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoschi, Letícia Sabo-
dc.contributor.authorGalo, Maria de Lourdes Bueno Trindade-
dc.date.accessioned2014-05-27T11:22:23Z-
dc.date.accessioned2016-10-25T18:23:30Z-
dc.date.available2014-05-27T11:22:23Z-
dc.date.available2016-10-25T18:23:30Z-
dc.date.issued2007-01-01-
dc.identifierhttp://ojs.c3sl.ufpr.br/ojs/index.php/bcg/article/view/8243-
dc.identifier.citationBoletim de Ciencias Geodesicas, v. 13, n. 1, p. 22-41, 2007.-
dc.identifier.issn1413-4853-
dc.identifier.urihttp://hdl.handle.net/11449/69494-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/69494-
dc.description.abstractThe great diversity of materials that characterizes the urban environment determines a structure of mixed classes in a classification of multiespectral images. In that sense, it is important to define an appropriate classification system using a non parametric classifier, that allows incorporating non spectral (such as texture) data to the process. They also allow analyzing the uncertainty associated to each class from the output alues of the network calculated in relation to each class. Considering these properties, an experiment was carried out. This experiment consisted in the application of an Artificial Neural Network aiming at the classification of the urban land cover of Presidente Prudente and the analysis of the uncertainty in the representation of the mapped thematic classes. The results showed that it is possible to discriminate the variations in the urban land cover through the application of an Artificial Neural Network. It was also possible to visualize the spatial variation of the uncertainty in the attribution of classes of urban land cover from the generated representations. The class characterized by a defined pattern as intermediary related to the impermeability of the urban soil presented larger ambiguity degree and, therefore, larger mixture.en
dc.format.extent22-41-
dc.language.isopor-
dc.sourceScopus-
dc.subjectArtificial Neural Networks-
dc.subjectClassification of urban environment-
dc.subjectRemote Sensing-
dc.subjectUncertainty in the classification-
dc.subjectartificial neural network-
dc.subjectimage classification-
dc.subjectland cover-
dc.subjectspatial variation-
dc.subjectspectral analysis-
dc.subjecttexture-
dc.subjectthematic mapping-
dc.subjectuncertainty analysis-
dc.subjectvisualization-
dc.titleAnálise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificialpt
dc.title.alternativeUncertainty analysis in the representation of the urban land cover classes through the application of artificial neural networken
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Estadual Paulista Programa de Pós-Graduação em Ciências Cartográficas, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP-
dc.description.affiliationUniversidade Estadual Paulista Faculdade de Ciência e Tecnologia Depto de Cartografia, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP-
dc.description.affiliationUnespUniversidade Estadual Paulista Programa de Pós-Graduação em Ciências Cartográficas, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP-
dc.description.affiliationUnespUniversidade Estadual Paulista Faculdade de Ciência e Tecnologia Depto de Cartografia, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP-
dc.rights.accessRightsAcesso aberto-
dc.identifier.file2-s2.0-36549066884.pdf-
dc.relation.ispartofBoletim de Ciências Geodésicas-
dc.identifier.scopus2-s2.0-36549066884-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.