You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/69533
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLlibre, Jaume-
dc.contributor.authorBuzzi, Claudio A.-
dc.contributor.authorDa Silva, Paulo R.-
dc.date.accessioned2014-05-27T11:22:24Z-
dc.date.accessioned2016-10-25T18:23:35Z-
dc.date.available2014-05-27T11:22:24Z-
dc.date.available2016-10-25T18:23:35Z-
dc.date.issued2007-03-01-
dc.identifierhttp://aimsciences.org/journals/pdfs.jsp?paperID=2122&mode=abstract-
dc.identifierhttp://dx.doi.org/10.3934/dcds.2007.17.529-
dc.identifier.citationDiscrete and Continuous Dynamical Systems, v. 17, n. 3, p. 529-540, 2007.-
dc.identifier.issn1078-0947-
dc.identifier.urihttp://hdl.handle.net/11449/69533-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/69533-
dc.description.abstractWe consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.en
dc.format.extent529-540-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAveraging theory-
dc.subjectHopf bifurcation-
dc.subjectLorenz system-
dc.title3-Dimensional hopf bifurcation via averaging theoryen
dc.typeoutro-
dc.contributor.institutionUniversitat Autònoma de Barcelona-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartament de Matemàtiques Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona-
dc.description.affiliationDepartamento de Matemática Universidade Estadual Paulista-UNESP, S. Paulo-
dc.description.affiliationUnespDepartamento de Matemática Universidade Estadual Paulista-UNESP, S. Paulo-
dc.identifier.doi10.3934/dcds.2007.17.529-
dc.identifier.wosWOS:000242696700005-
dc.rights.accessRightsAcesso aberto-
dc.identifier.file2-s2.0-34247228649.pdf-
dc.relation.ispartofDiscrete and Continuous Dynamical Systems-
dc.identifier.scopus2-s2.0-34247228649-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.