You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/69937
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGarnier, Josselin-
dc.contributor.authorKraenkel, Roberto André-
dc.contributor.authorNachbin, André-
dc.date.accessioned2014-05-27T11:22:37Z-
dc.date.accessioned2016-10-25T18:24:26Z-
dc.date.available2014-05-27T11:22:37Z-
dc.date.available2016-10-25T18:24:26Z-
dc.date.issued2007-10-12-
dc.identifierhttp://dx.doi.org/10.1103/PhysRevE.76.046311-
dc.identifier.citationPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 76, n. 4, 2007.-
dc.identifier.issn1539-3755-
dc.identifier.issn1550-2376-
dc.identifier.urihttp://hdl.handle.net/11449/69937-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/69937-
dc.description.abstractIn this paper, we consider the propagation of water waves in a long-wave asymptotic regime, when the bottom topography is periodic on a short length scale. We perform a multiscale asymptotic analysis of the full potential theory model and of a family of reduced Boussinesq systems parametrized by a free parameter that is the depth at which the velocity is evaluated. We obtain explicit expressions for the coefficients of the resulting effective Korteweg-de Vries (KdV) equations. We show that it is possible to choose the free parameter of the reduced model so as to match the KdV limits of the full and reduced models. Hence the reduced model is optimal regarding the embedded linear weakly dispersive and weakly nonlinear characteristics of the underlying physical problem, which has a microstructure. We also discuss the impact of the rough bottom on the effective wave propagation. In particular, nonlinearity is enhanced and we can distinguish two regimes depending on the period of the bottom where the dispersion is either enhanced or reduced compared to the flat bottom case. © 2007 The American Physical Society.en
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAsymptotic analysisen
dc.subjectMathematical modelsen
dc.subjectProblem solvingen
dc.subjectVelocity measurementen
dc.subjectWave propagationen
dc.subjectMultiscale asymptotic analysisen
dc.subjectOptimal Boussinesq modelsen
dc.subjectShallow water wavesen
dc.subjectNonlinear equationsen
dc.titleOptimal Boussinesq model for shallow-water waves interacting with a microstructureen
dc.typeoutro-
dc.contributor.institutionUniversité Paris 7-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionInstituto de Matemática Pura e Aplicada-
dc.description.affiliationLaboratoire de Probabilités et Modèles Aléatoires Laboratoire Jacques-Louis Lions Université Paris 7, 2 Place Jussieu, 75251 Paris Cedex 05-
dc.description.affiliationInstituto de Fisica Teorica-UNESP, R. Pamplona 145, 01405-900 São Paulo-
dc.description.affiliationInstituto de Matemática Pura e Aplicada, Est. D Castorina 110, Jardim Botĝnico, RJ 22460-320-
dc.description.affiliationUnespInstituto de Fisica Teorica-UNESP, R. Pamplona 145, 01405-900 São Paulo-
dc.identifier.doi10.1103/PhysRevE.76.046311-
dc.rights.accessRightsAcesso restrito-
dc.identifier.file2-s2.0-35248899504.pdf-
dc.relation.ispartofPhysical Review E: Statistical, Nonlinear, and Soft Matter Physics-
dc.identifier.scopus2-s2.0-35248899504-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.