Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/70158
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aguiar, Paulo R. | - |
dc.contributor.author | Cruz, Carlos E. D. | - |
dc.contributor.author | Paula, Wallace C. F. | - |
dc.contributor.author | Bianchi, Eduardo C. | - |
dc.contributor.author | Thomazella, Rogério | - |
dc.contributor.author | Dotto, Fábio R. L. | - |
dc.date.accessioned | 2014-05-27T11:22:43Z | - |
dc.date.accessioned | 2016-10-25T18:24:55Z | - |
dc.date.available | 2014-05-27T11:22:43Z | - |
dc.date.available | 2016-10-25T18:24:55Z | - |
dc.date.issued | 2007-12-01 | - |
dc.identifier | http://www.actapress.com/Abstract.aspx?paperId=29434 | - |
dc.identifier.citation | Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, AIA 2007, p. 96-101. | - |
dc.identifier.uri | http://hdl.handle.net/11449/70158 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/70158 | - |
dc.description.abstract | Several systems are currently tested in order to obtain a feasible and safe method for automation and control of grinding process. This work aims to predict the surface roughness of the parts of SAE 1020 steel ground in a surface grinding machine. Acoustic emission and electrical power signals were acquired by a commercial data acquisition system. The former from a fixed sensor placed near the workpiece and the latter from the electric induction motor that drives the grinding wheel. Both signals were digitally processed through known statistics, which with the depth of cut composed three data sets implemented to the artificial neural networks. The neural network through its mathematical logical system interpreted the signals and successful predicted the workpiece roughness. The results from the neural networks were compared to the roughness values taken from the worpieces, showing high efficiency and applicability on monitoring and controlling the grinding process. Also, a comparison among the three data sets was carried out. | en |
dc.format.extent | 96-101 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Acoustic emission | - |
dc.subject | Electric power | - |
dc.subject | Neural network | - |
dc.subject | Surface finishing | - |
dc.subject | Surface grinding | - |
dc.subject | Surface roughness | - |
dc.subject | Acoustic emission testing | - |
dc.subject | Electric power systems | - |
dc.subject | Finishing | - |
dc.subject | Grinding (machining) | - |
dc.subject | Neural networks | - |
dc.title | Neural network approach for surface roughness prediction in surface grinding | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | School of Engineering - FEB Electrical Engineering Department Sao Paulo State University - Unesp, Bauru Campus | - |
dc.description.affiliation | School of Engineering - FEB Mechanical Engineering Department Sao Paulo State University - Unesp, Bauru Campus | - |
dc.description.affiliation | Graduate Program in Science and Technology of Materials School of Science - FC Sao Paulo State University - Unesp, Bauru Campus | - |
dc.description.affiliationUnesp | School of Engineering - FEB Electrical Engineering Department Sao Paulo State University - Unesp, Bauru Campus | - |
dc.description.affiliationUnesp | School of Engineering - FEB Mechanical Engineering Department Sao Paulo State University - Unesp, Bauru Campus | - |
dc.description.affiliationUnesp | Graduate Program in Science and Technology of Materials School of Science - FC Sao Paulo State University - Unesp, Bauru Campus | - |
dc.identifier.wos | WOS:000246292900018 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, AIA 2007 | - |
dc.identifier.scopus | 2-s2.0-38349113851 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.