You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/70588
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarreno, E. M.-
dc.contributor.authorPadilha-Feltrin, A.-
dc.date.accessioned2014-05-27T11:23:40Z-
dc.date.accessioned2016-10-25T18:26:02Z-
dc.date.available2014-05-27T11:23:40Z-
dc.date.available2016-10-25T18:26:02Z-
dc.date.issued2008-09-29-
dc.identifierhttp://dx.doi.org/10.1109/PES.2008.4596675-
dc.identifier.citationIEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES.-
dc.identifier.urihttp://hdl.handle.net/11449/70588-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/70588-
dc.description.abstractIn the spatial electric load forecasting, the future land use determination is one of the most important tasks, and one of the most difficult, because of the stochastic nature of the city growth. This paper proposes a fast and efficient algorithm to find out the future land use for the vacant land in the utility service area, using ideas from knowledge extraction and evolutionary algorithms. The methodology was implemented into a full simulation software for spatial electric load forecasting, showing a high rate of success when the results are compared to information gathered from specialists. The importance of this methodology lies in the reduced set of data needed to perform the task and the simplicity for implementation, which is a great plus for most of the electric utilities without specialized tools for this planning activity. © 2008 IEEE.en
dc.language.isoeng-
dc.sourceScopus-
dc.subjectDistribution planning-
dc.subjectKnowledge extraction-
dc.subjectLand use-
dc.subjectSpatial electric load forecasting-
dc.subjectElectric load management-
dc.subjectElectric loads-
dc.subjectElectric tools-
dc.subjectElectric utilities-
dc.subjectEnergy conversion-
dc.subjectEvolutionary algorithms-
dc.subjectForecasting-
dc.subjectHeuristic programming-
dc.subjectPotential energy-
dc.subjectPotential energy surfaces-
dc.subjectPublic utilities-
dc.subjectVibrations (mechanical)-
dc.subject21st century-
dc.subjectEfficient algorithms-
dc.subjectElectrical energy-
dc.subjectHigh rates-
dc.subjectService areas-
dc.subjectSimulation softwares-
dc.subjectSpecialized tools-
dc.subjectStochastic nature-
dc.subjectElectric load forecasting-
dc.titleEvolutionary heuristic to determine future land useen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationIEEE-
dc.description.affiliationUniversidade Estadual Paulista (UNESP), Ilha Solteira, SP-
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP), Ilha Solteira, SP-
dc.identifier.doi10.1109/PES.2008.4596675-
dc.identifier.wosWOS:000264403802127-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES-
dc.identifier.scopus2-s2.0-52349104733-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.