You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/70638
Full metadata record
DC FieldValueLanguage
dc.contributor.authorToledo, Claudio Fabiano Motta-
dc.contributor.authorDe Jesus Filho, José Eurípedes Ferreira-
dc.contributor.authorFrança, Paulo Morelato-
dc.date.accessioned2014-05-27T11:23:42Z-
dc.date.accessioned2016-10-25T18:26:08Z-
dc.date.available2014-05-27T11:23:42Z-
dc.date.available2016-10-25T18:26:08Z-
dc.date.issued2008-11-24-
dc.identifierhttp://dx.doi.org/10.1109/ETFA.2008.4638579-
dc.identifier.citationIEEE Symposium on Emerging Technologies and Factory Automation, ETFA, p. 1384-1391.-
dc.identifier.urihttp://hdl.handle.net/11449/70638-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/70638-
dc.description.abstractThe present paper evaluates meta-heuristic approaches to solve a soft drink industry problem. This problem is motivated by a real situation found in soft drink companies, where the lot sizing and scheduling of raw materials in tanks and products in lines must be simultaneously determined. Tabu search, threshold accepting and genetic algorithms are used as procedures to solve the problem at hand. The methods are evaluated with a set of instance already available for this problem. This paper also proposes a new set of complex instances. The computational results comparing these approaches are reported. © 2008 IEEE.en
dc.format.extent1384-1391-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectBeverages-
dc.subjectDiesel engines-
dc.subjectFactory automation-
dc.subjectGenetic algorithms-
dc.subjectHeuristic methods-
dc.subjectSemiconductor quantum dots-
dc.subjectSystems analysis-
dc.subjectTabu search-
dc.subjectAnd genetic algorithms-
dc.subjectComputational results-
dc.subjectHeuristic approaches-
dc.subjectIn lines-
dc.subjectLot sizings-
dc.subjectReal situations-
dc.subjectSoft drinks-
dc.subjectThreshold accepting-
dc.subjectProblem solving-
dc.titleMeta-heuristic approaches for a soft drink industry problemen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Lavras (UFLA)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Federal de Lavras Departamento de Ciência da Computação, C.P. 3037, CEP 37200-000 Lavras, MG-
dc.description.affiliationUniversidade Estadual Paulista Departamento de Matemática, Estatística e Computação, R. Roberto Simonsen, 305, CEP 19060-900, P. Prudente, SP-
dc.description.affiliationUnespUniversidade Estadual Paulista Departamento de Matemática, Estatística e Computação, R. Roberto Simonsen, 305, CEP 19060-900, P. Prudente, SP-
dc.identifier.doi10.1109/ETFA.2008.4638579-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Symposium on Emerging Technologies and Factory Automation, ETFA-
dc.identifier.scopus2-s2.0-56349167064-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.