Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/70639
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Docusse, Tiago A. | - |
dc.contributor.author | Furlani, Jullyene R. | - |
dc.contributor.author | Romano, Rodolfo P. | - |
dc.contributor.author | Guido, Rodrigo C. | - |
dc.contributor.author | Chen, Shi-Huang | - |
dc.contributor.author | Marranghello, Norian | - |
dc.contributor.author | Pereira, Aledir S. | - |
dc.date.accessioned | 2014-05-27T11:23:42Z | - |
dc.date.accessioned | 2016-10-25T18:26:08Z | - |
dc.date.available | 2014-05-27T11:23:42Z | - |
dc.date.available | 2016-10-25T18:26:08Z | - |
dc.date.issued | 2008-11-24 | - |
dc.identifier | http://dx.doi.org/10.1109/IJCNN.2008.4634248 | - |
dc.identifier.citation | Proceedings of the International Joint Conference on Neural Networks, p. 3181-3186, 2008. | - |
dc.identifier.uri | http://hdl.handle.net/11449/70639 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/70639 | - |
dc.description.abstract | This paper presents a method to enhance microcalcifications and classify their borders by applying the wavelet transform. Decomposing an image and removing its low frequency sub-band the microcalcifications are enhanced. Analyzing the effects of perturbations on high frequency subband it's possible to classify its borders as smooth, rugged or undefined. Results show a false positive reduction of 69.27% using a region growing algorithm. © 2008 IEEE. | en |
dc.format.extent | 3181-3186 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Wavelet transforms | - |
dc.subject | False positives | - |
dc.subject | High frequencies | - |
dc.subject | Low frequencies | - |
dc.subject | Microcalcification | - |
dc.subject | Microcalcifications | - |
dc.subject | Region growing algorithms | - |
dc.subject | Sub bands | - |
dc.subject | Neural networks | - |
dc.title | Microcalcification enhancement and classification on mammograms using the wavelet transform | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Shu-Te University | - |
dc.description.affiliation | Departamento de Ciências de Computação e Estatística Universidade Estadual Paulista, São José do Rio Preto, SP | - |
dc.description.affiliation | Instituto de Física de São Carlos Universidade de São Paulo, São Carlos, SP | - |
dc.description.affiliation | Department of Computer Science and Information Engineering Shu-Te University | - |
dc.description.affiliationUnesp | Departamento de Ciências de Computação e Estatística Universidade Estadual Paulista, São José do Rio Preto, SP | - |
dc.identifier.doi | 10.1109/IJCNN.2008.4634248 | - |
dc.identifier.wos | WOS:000263827202008 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Proceedings of the International Joint Conference on Neural Networks | - |
dc.identifier.scopus | 2-s2.0-56349133254 | - |
dc.identifier.orcid | 0000-0003-1086-3312 | pt |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.