You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/70640
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Luciana L.-
dc.contributor.authorTronco, Mário L.-
dc.contributor.authorVian, Henrique A.-
dc.contributor.authorPellinson, Giovana-
dc.contributor.authorPorto, Arthur J. V.-
dc.date.accessioned2014-05-27T11:23:42Z-
dc.date.accessioned2016-10-25T18:26:08Z-
dc.date.available2014-05-27T11:23:42Z-
dc.date.available2016-10-25T18:26:08Z-
dc.date.issued2008-11-24-
dc.identifierhttp://dx.doi.org/10.1109/IJCNN.2008.4634265-
dc.identifier.citationProceedings of the International Joint Conference on Neural Networks, p. 3292-3297.-
dc.identifier.issn1098-7576-
dc.identifier.urihttp://hdl.handle.net/11449/70640-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/70640-
dc.description.abstractAutonomous robots must be able to learn and maintain models of their environments. In this context, the present work considers techniques for the classification and extraction of features from images in joined with artificial neural networks in order to use them in the system of mapping and localization of the mobile robot of Laboratory of Automation and Evolutive Computer (LACE). To do this, the robot uses a sensorial system composed for ultrasound sensors and a catadioptric vision system formed by a camera and a conical mirror. The mapping system is composed by three modules. Two of them will be presented in this paper: the classifier and the characterizer module. The first module uses a hierarchical neural network to do the classification; the second uses techiniques of extraction of attributes of images and recognition of invariant patterns extracted from the places images set. The neural network of the classifier module is structured in two layers, reason and intuition, and is trained to classify each place explored for the robot amongst four predefine classes. The final result of the exploration is the construction of a topological map of the explored environment. Results gotten through the simulation of the both modules of the mapping system will be presented in this paper. © 2008 IEEE.en
dc.format.extent3292-3297-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectClassifiers-
dc.subjectComputer networks-
dc.subjectConformal mapping-
dc.subjectExtractive metallurgy-
dc.subjectFeature extraction-
dc.subjectImage classification-
dc.subjectImage enhancement-
dc.subjectLearning systems-
dc.subjectMobile robots-
dc.subjectRobotics-
dc.subjectRobots-
dc.subjectVegetation-
dc.subjectVisual communication-
dc.subjectWireless networks-
dc.subjectArtificial neural networks-
dc.subjectAutonomous robots-
dc.subjectCatadioptric visions-
dc.subjectConical mirrors-
dc.subjectEnvironment mappings-
dc.subjectHierarchical neural networks-
dc.subjectInvariant patterns-
dc.subjectMapping systems-
dc.subjectOmnivision-
dc.subjectSensorial systems-
dc.subjectTopological maps-
dc.subjectTwo layers-
dc.subjectUltrasound sensors-
dc.subjectNeural networks-
dc.titleEnvironment mapping for mobile robots navigation using hierarchical neural network and omnivisionen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.description.affiliationUniversidade Estadual Paulista Instituto de Biociências, Letras e Ciências Exatas - IBILCE, Av. Cristovão Colombo, 2265, CEP: 15054-000 São José do Rio Preto - SP-
dc.description.affiliationEscola de Engenharia de São Carlos Universidade de São Paulo - USP, Av. Trabalhador São-Carlense, 400, CEP: 13560-970 São Carlos - SP-
dc.description.affiliationUnespUniversidade Estadual Paulista Instituto de Biociências, Letras e Ciências Exatas - IBILCE, Av. Cristovão Colombo, 2265, CEP: 15054-000 São José do Rio Preto - SP-
dc.identifier.doi10.1109/IJCNN.2008.4634265-
dc.identifier.wosWOS:000263827202025-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of the International Joint Conference on Neural Networks-
dc.identifier.scopus2-s2.0-56349147445-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.