You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/70688
Full metadata record
DC FieldValueLanguage
dc.contributor.authorToledo, Claudio Fabiano Motta-
dc.contributor.authorFrança, Paulo Morelato-
dc.contributor.authorRosa, Kalianne Almeida-
dc.date.accessioned2014-05-27T11:23:43Z-
dc.date.accessioned2016-10-25T18:26:17Z-
dc.date.available2014-05-27T11:23:43Z-
dc.date.available2016-10-25T18:26:17Z-
dc.date.issued2008-12-01-
dc.identifierhttp://dx.doi.org/10.1145/1363686.1364114-
dc.identifier.citationProceedings of the ACM Symposium on Applied Computing, p. 1777-1781.-
dc.identifier.urihttp://hdl.handle.net/11449/70688-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/70688-
dc.description.abstractThis paper studies the use of different population structures in a Genetic Algorithm (GA) applied to lot sizing and scheduling problems. The population approaches are divided into two types: single-population and multi-population. The first type has a non-structured single population. The multi-population type presents non-structured and structured populations organized in binary and ternary trees. Each population approach is tested on lot sizing and scheduling problems found in soft drink companies. These problems have two interdependent levels with decisions concerning raw material storage and soft drink bottling. The challenge is to simultaneously determine the lot sizing and scheduling of raw materials in tanks and products in lines. Computational results are reported allowing determining the better population structure for the set of problem instances evaluated. Copyright 2008 ACM.en
dc.format.extent1777-1781-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectGenetic algorithms-
dc.subjectLot sizing-
dc.subjectMulti-population-
dc.subjectScheduling-
dc.subjectSoft drink company-
dc.subjectBeverages-
dc.subjectBinary trees-
dc.subjectComputational methods-
dc.subjectDiesel engines-
dc.subjectComputational results-
dc.subjectIn lines-
dc.subjectMaterial storages-
dc.subjectPopulation structures-
dc.subjectProblem instances-
dc.subjectScheduling problems-
dc.subjectTernary trees-
dc.subjectTwo types-
dc.subjectScheduling algorithms-
dc.titleEvaluating genetic algorithms with different population structures on a lot sizing and scheduling problemen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Lavras (UFLA)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Federal de Lavras Dept. de Ciência da Computação, 3037, 372000-00, Lavras, MG-
dc.description.affiliationUniversidade Estadual Paulista Dept de Mat., Estat. e Computação, R.Roberto Simonsen, 305, 19060-900, P. Prudente, SP-
dc.description.affiliationUnespUniversidade Estadual Paulista Dept de Mat., Estat. e Computação, R.Roberto Simonsen, 305, 19060-900, P. Prudente, SP-
dc.identifier.doi10.1145/1363686.1364114-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of the ACM Symposium on Applied Computing-
dc.identifier.scopus2-s2.0-56749169614-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.