You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/7102
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerreira, V. G.-
dc.contributor.authorde Queiroz, R. A. B.-
dc.contributor.authorLima, G. A. B.-
dc.contributor.authorCuenca, R. G.-
dc.contributor.authorOishi, C. M.-
dc.contributor.authorAzevedo, J. L. F.-
dc.contributor.authorMcKee, S.-
dc.date.accessioned2014-05-20T13:23:31Z-
dc.date.accessioned2016-10-25T16:44:30Z-
dc.date.available2014-05-20T13:23:31Z-
dc.date.available2016-10-25T16:44:30Z-
dc.date.issued2012-03-30-
dc.identifierhttp://dx.doi.org/10.1016/j.compfluid.2011.12.021-
dc.identifier.citationComputers & Fluids. Oxford: Pergamon-Elsevier B.V. Ltd, v. 57, p. 208-224, 2012.-
dc.identifier.issn0045-7930-
dc.identifier.urihttp://hdl.handle.net/11449/7102-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/7102-
dc.description.abstractA practical high resolution upwind differencing scheme for the numerical solution of convection-dominated transport problems is presented. The scheme is based on TVD and CBC stability criteria and is implemented in the context of the finite difference methodology. The performance of the scheme is investigated by solving the 1D/2D scalar advection equations, 1D inviscid Burgers' equation, 1D scalar convection-diffusion equation, 1D/2D compressible Euler's equations, and 2D incompressible Navier-Stokes equations. The numerical results displayed good agreement with other existing numerical and experimental data. (C) 2012 Elsevier Ltd. All rights reserved.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent208-224-
dc.language.isoeng-
dc.publisherPergamon-Elsevier B.V. Ltd-
dc.sourceWeb of Science-
dc.subjectNumerical simulationen
dc.subjectCBC/TVD stabilityen
dc.subjectHigh resolutionen
dc.subjectUpwindingen
dc.subjectMonotonic interpolationen
dc.subjectFinite differenceen
dc.subjectConvection modelingen
dc.subjectBoundednessen
dc.titleA bounded upwinding scheme for computing convection-dominated transport problemsen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionCTA IAE ALA-
dc.contributor.institutionUniv Strathclyde-
dc.description.affiliationInst Ciencias Matemat & Comp USP, Dept Matemat Aplicada & Estat, São Carlos, SP, Brazil-
dc.description.affiliationUniv Estadual Julio de Mesquita Filho UNESP, Dept Matemat, Presidente Prudente, SP, Brazil-
dc.description.affiliationCTA IAE ALA, Inst Aeronaut & Espaco, Sao Jose Dos Campos, SP, Brazil-
dc.description.affiliationUniv Strathclyde, Dept Math & Stat, Glasgow, Lanark, Scotland-
dc.description.affiliationUnespUniv Estadual Julio de Mesquita Filho UNESP, Dept Matemat, Presidente Prudente, SP, Brazil-
dc.description.sponsorshipIdFAPESP: 05/51458-0-
dc.description.sponsorshipIdFAPESP: 06/05910-1-
dc.description.sponsorshipIdFAPESP: 08/02673-4-
dc.description.sponsorshipIdFAPESP: 09/16954-8-
dc.description.sponsorshipIdFAPESP: 04/16064-9-
dc.description.sponsorshipIdFAPESP: 09/15892-9-
dc.description.sponsorshipIdCNPq: 304201/2005-7-
dc.description.sponsorshipIdCNPq: 312064/2006-3-
dc.description.sponsorshipIdCNPq: 477858/2009-0-
dc.description.sponsorshipIdCNPq: 305447/2010-6-
dc.identifier.doi10.1016/j.compfluid.2011.12.021-
dc.identifier.wosWOS:000301683300017-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofComputers & Fluids-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.