You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/71036
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGrégio, André R. A.-
dc.contributor.authorOliveira, Isabela L.-
dc.contributor.authorSantos, Rafael D. C.-
dc.contributor.authorCansian, Adriano M.-
dc.contributor.authorDeGeus, Paulo L.-
dc.date.accessioned2014-05-27T11:23:55Z-
dc.date.accessioned2016-10-25T18:27:04Z-
dc.date.available2014-05-27T11:23:55Z-
dc.date.available2016-10-25T18:27:04Z-
dc.date.issued2009-06-15-
dc.identifierhttp://dx.doi.org/10.1117/12.818310-
dc.identifier.citationProceedings of SPIE - The International Society for Optical Engineering, v. 7344.-
dc.identifier.issn0277-786X-
dc.identifier.urihttp://hdl.handle.net/11449/71036-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/71036-
dc.description.abstractMalware has become a major threat in the last years due to the ease of spread through the Internet. Malware detection has become difficult with the use of compression, polymorphic methods and techniques to detect and disable security software. Those and other obfuscation techniques pose a problem for detection and classification schemes that analyze malware behavior. In this paper we propose a distributed architecture to improve malware collection using different honeypot technologies to increase the variety of malware collected. We also present a daemon tool developed to grab malware distributed through spam and a pre-classification technique that uses antivirus technology to separate malware in generic classes. © 2009 SPIE.en
dc.language.isoeng-
dc.sourceScopus-
dc.subjectHoneyclients-
dc.subjectHoneypots-
dc.subjectInformation systems security-
dc.subjectMalicious software-
dc.subjectMalware collection-
dc.subjectComputer software-
dc.subjectInformation management-
dc.subjectInformation systems-
dc.subjectInternet-
dc.subjectIntrusion detection-
dc.subjectMining-
dc.subjectComputer crime-
dc.titleMalware distributed collection and pre-classification system using honeypot technologyen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionSão José dos Campos-
dc.description.affiliationInstitute of Computing University of Campinas (UNICAMP), Campinas, SP-
dc.description.affiliationUNESP - Universidade Estadual Paulista Sao Paulo State University Sao Jose do Rio Preto Campus-
dc.description.affiliationComputing and Applied Mathematics Lab. National Institute for Space Research (INPE) São José dos Campos, SP-
dc.description.affiliationUnespUNESP - Universidade Estadual Paulista Sao Paulo State University Sao Jose do Rio Preto Campus-
dc.identifier.doi10.1117/12.818310-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineering-
dc.identifier.scopus2-s2.0-66749173635-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.