You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/7106
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMessias, Marcelo-
dc.date.accessioned2014-05-20T13:23:32Z-
dc.date.accessioned2016-10-25T16:44:31Z-
dc.date.available2014-05-20T13:23:32Z-
dc.date.available2016-10-25T16:44:31Z-
dc.date.issued2012-05-01-
dc.identifierhttp://dx.doi.org/10.3934/dcds.2012.32.1881-
dc.identifier.citationDiscrete and Continuous Dynamical Systems. Springfield: Amer Inst Mathematical Sciences, v. 32, n. 5, p. 1881-1899, 2012.-
dc.identifier.issn1078-0947-
dc.identifier.urihttp://hdl.handle.net/11449/7106-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/7106-
dc.description.abstractWe study periodic perturbations of planar quadratic vector fields having infinite heteroclinic cycles, consisting of an invariant straight line joining two saddle points at infinity and an arc of orbit also at infinity. The global study concerning the infinity of the perturbed system is performed by means of the Poincare compactification in polar coordinates, from which we obtain a system defined on a set equivalent to a solid torus in R-3, whose boundary plays the role of the infinity. It is shown that for certain type of periodic perturbation, there exist two differentiable curves in the parameter space for which the perturbed system presents heteroclinic tangencies and transversal intersections between the stable and unstable manifolds of two normally hyperbolic lines of singularities at infinity. The transversality of the manifolds is proved using the Melnikov method and implies, via the Birkhoff-Smale Theorem, in a complex dynamical behavior of the perturbed system solutions in a finite part of the phase space. Numerical simulations are performed for a particular example in order to illustrate this behavior, which could be called the chaos arising from infinity, because it depends on the global structure of the quadratic system, including the points at infinity.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.format.extent1881-1899-
dc.language.isoeng-
dc.publisherAmer Inst Mathematical Sciences-
dc.sourceWeb of Science-
dc.subjectQuadratic systemen
dc.subjectinfinite heteroclinic cycleen
dc.subjectperiodic perturbationen
dc.subjectPoincare compactificationen
dc.subjectheteroclinic bifurcationen
dc.subjectchaotic dynamicsen
dc.titlePERIODIC PERTURBATION of QUADRATIC SYSTEMS WITH TWO INFINITE HETEROCLINIC CYCLESen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Estadual Paulista UNESP, Dept Matemat Estat & Comp, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Dept Matemat Estat & Comp, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil-
dc.description.sponsorshipIdCNPq: 305204/2009-2-
dc.identifier.doi10.3934/dcds.2012.32.1881-
dc.identifier.wosWOS:000299997100021-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofDiscrete and Continuous Dynamical Systems-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.