You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/71147
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDos Santos, Cássia T.-
dc.contributor.authorBazzan, Ana L. C.-
dc.contributor.authorLemke, Ney-
dc.date.accessioned2014-05-27T11:23:58Z-
dc.date.accessioned2016-10-25T18:27:23Z-
dc.date.available2014-05-27T11:23:58Z-
dc.date.available2016-10-25T18:27:23Z-
dc.date.issued2009-09-14-
dc.identifierhttp://dx.doi.org/10.1007/978-3-642-03223-3_8-
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 5676 LNBI, p. 86-96.-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttp://hdl.handle.net/11449/71147-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/71147-
dc.description.abstractMost of the tasks in genome annotation can be at least partially automated. Since this annotation is time-consuming, facilitating some parts of the process - thus freeing the specialist to carry out more valuable tasks - has been the motivation of many tools and annotation environments. In particular, annotation of protein function can benefit from knowledge about enzymatic processes. The use of sequence homology alone is not a good approach to derive this knowledge when there are only a few homologues of the sequence to be annotated. The alternative is to use motifs. This paper uses a symbolic machine learning approach to derive rules for the classification of enzymes according to the Enzyme Commission (EC). Our results show that, for the top class, the average global classification error is 3.13%. Our technique also produces a set of rules relating structural to functional information, which is important to understand the protein tridimensional structure and determine its biological function. © 2009 Springer Berlin Heidelberg.en
dc.format.extent86-96-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAutomatic classification-
dc.subjectBiological functions-
dc.subjectClassification errors-
dc.subjectEnzymatic process-
dc.subjectEnzyme commissions-
dc.subjectFunctional information-
dc.subjectGenome annotation-
dc.subjectProtein annotation-
dc.subjectProtein functions-
dc.subjectSequence homology-
dc.subjectSet of rules-
dc.subjectSymbolic machine learning-
dc.subjectTri-dimensional structure-
dc.subjectAutomatic indexing-
dc.subjectBiology-
dc.subjectEnzymes-
dc.subjectBioinformatics-
dc.titleAutomatic classification of enzyme family in protein annotationen
dc.typeoutro-
dc.contributor.institutionUniversidade de Évora-
dc.contributor.institutionUniversidade Federal do Rio Grande do Sul (UFRGS)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartamento de Informática Universidade de Évora-
dc.description.affiliationInstituto de Informática PPGC Universidade Federal Do Rio Grande Do sul, Porto Alegre, RS C. P. 15064, 91.501-970-
dc.description.affiliationDep. de Física e Biofísica Instituto de Biociências UNESP, Botucatu, SP C.P. 510, 18618-000-
dc.description.affiliationUnespDep. de Física e Biofísica Instituto de Biociências UNESP, Botucatu, SP C.P. 510, 18618-000-
dc.identifier.doi10.1007/978-3-642-03223-3_8-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
dc.identifier.scopus2-s2.0-69949190117-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.