You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/7116
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLlibre, Jaume-
dc.contributor.authorMessias, Marcelo-
dc.date.accessioned2014-05-20T13:23:33Z-
dc.date.accessioned2016-10-25T16:44:32Z-
dc.date.available2014-05-20T13:23:33Z-
dc.date.available2016-10-25T16:44:32Z-
dc.date.issued2009-02-01-
dc.identifierhttp://dx.doi.org/10.1016/j.physd.2008.10.011-
dc.identifier.citationPhysica D-nonlinear Phenomena. Amsterdam: Elsevier B.V., v. 238, n. 3, p. 241-252, 2009.-
dc.identifier.issn0167-2789-
dc.identifier.urihttp://hdl.handle.net/11449/7116-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/7116-
dc.description.abstractThe Rikitake system is a three dimensional vector field obtained experimentally from a two-disk dynamo apparatus, which models the geomagnetic field and is used to explain the known irregular switch in its polarity. The system has a 3-dimensional Lorenz type chaotic attractor around its two singular points. However this attractor is not bounded by any ellipsoidal surface as in the Lorenz attractor. In this paper, by using the Poincare compactification for polynomial vector fields in R(3) we study the dynamics of the Rikitake system at infinity, showing that there are orbits which escape to, or come from, infinity, instead of going towards the attractor. Moreover we study, for particular values of the parameters, the flow over two invariant planes, and describe the global flow of the system when it has two independent first integrals and thus is completely integrable. The global analysis performed, allows us to give a numerical description of the creation of Rikitake attractor. (c) 2008 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipMEC/FEDER-
dc.description.sponsorshipCICYT-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.format.extent241-252-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectRikitake attractoren
dc.subjectGeodynamoen
dc.subjectUnbounded orbitsen
dc.subjectPoincare compactificationen
dc.subjectStrange attractor creationen
dc.subjectLorenz attractoren
dc.titleGlobal dynamics of the Rikitake systemen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Autonoma Barcelona-
dc.description.affiliationUNESP, Fac Ciencias & Tecnol, Dept Matemat Estatist & Computacao, BR-19060900 Presidente Prudente, SP, Brazil-
dc.description.affiliationUniv Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain-
dc.description.affiliationUnespUNESP, Fac Ciencias & Tecnol, Dept Matemat Estatist & Computacao, BR-19060900 Presidente Prudente, SP, Brazil-
dc.description.sponsorshipIdMEC/FEDER: MTM2005-06098-CO2-01-
dc.description.sponsorshipIdCICYT: 2005SGR 00550-
dc.description.sponsorshipIdCNPq: 478544/2007-3-
dc.identifier.doi10.1016/j.physd.2008.10.011-
dc.identifier.wosWOS:000263401900002-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPhysica D: Nonlinear Phenomena-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.