You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/7118
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLlibre, Jaume-
dc.contributor.authorMessias, Marcelo-
dc.contributor.authorDa Silva, Paulo Ricardo-
dc.date.accessioned2014-05-20T13:23:33Z-
dc.date.accessioned2016-10-25T16:44:32Z-
dc.date.available2014-05-20T13:23:33Z-
dc.date.available2016-10-25T16:44:32Z-
dc.date.issued2010-10-01-
dc.identifierhttp://dx.doi.org/10.1142/S0218127410027593-
dc.identifier.citationInternational Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 20, n. 10, p. 3137-3155, 2010.-
dc.identifier.issn0218-1274-
dc.identifier.urihttp://hdl.handle.net/11449/7118-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/7118-
dc.description.abstractIn this paper by using the Poincare compactification of R(3) we describe the global dynamics of the Lorenz system(x) over dot = s(-x + y), (y) over dot = rx - y - xz, (z) over dot = -bz + xy,having some invariant algebraic surfaces. of course ( x, y, z) is an element of R(3) are the state variables and (s, r, b) is an element of R(3) are the parameters. For six sets of the parameter values, the Lorenz system has invariant algebraic surfaces. For these six sets, we provide the global phase portrait of the system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity).en
dc.description.sponsorshipCICYT-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent3137-3155-
dc.language.isoeng-
dc.publisherWorld Scientific Publ Co Pte Ltd-
dc.sourceWeb of Science-
dc.subjectIntegrabilityen
dc.subjectLorenz systemen
dc.subjectPoincare compactificationen
dc.subjectdynamics at infinity invariant algebraic surfaceen
dc.titleGLOBAL DYNAMICS of THE LORENZ SYSTEM WITH INVARIANT ALGEBRAIC SURFACESen
dc.typeoutro-
dc.contributor.institutionUniv Autonoma Barcelona-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain-
dc.description.affiliationUniv Estadual Paulista, UNESP, Fac Ciencias & Tecnol, Dept Matemat Estat & Comp, BR-19060900 São Paulo, Brazil-
dc.description.affiliationUniv Estadual Paulista, UNESP, Inst Biociencias Letras & Ciencias Exatas, Dept Matemat, BR-15054000 São Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Fac Ciencias & Tecnol, Dept Matemat Estat & Comp, BR-19060900 São Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Inst Biociencias Letras & Ciencias Exatas, Dept Matemat, BR-15054000 São Paulo, Brazil-
dc.description.sponsorshipIdCICYT: 2009SGR 410-
dc.description.sponsorshipIdCNPq: 305204/2009-2-
dc.description.sponsorshipIdMTM2008-03437-
dc.identifier.doi10.1142/S0218127410027593-
dc.identifier.wosWOS:000286430000006-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Bifurcation and Chaos-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.