You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/71198
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDe Souza, André Nunes-
dc.contributor.authorZago, Maria Goretti-
dc.contributor.authorSaavedra, Osvaldo R.-
dc.contributor.authorRamos, Caio Oba-
dc.contributor.authorFerraz, Kleber-
dc.date.accessioned2014-05-27T11:24:00Z-
dc.date.accessioned2016-10-25T18:27:29Z-
dc.date.available2014-05-27T11:24:00Z-
dc.date.available2016-10-25T18:27:29Z-
dc.date.issued2009-10-19-
dc.identifierhttp://dx.doi.org/10.2202/1553-779X.2095-
dc.identifier.citationInternational Journal of Emerging Electric Power Systems, v. 10, n. 4, 2009.-
dc.identifier.issn1553-779X-
dc.identifier.urihttp://hdl.handle.net/11449/71198-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/71198-
dc.description.abstractThis paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. © 2009 The Berkeley Electronic Press. All rights reserved.en
dc.language.isoeng-
dc.sourceScopus-
dc.subjectLightning-
dc.subjectNeural Networks-
dc.subjectPower Transformers-
dc.subjectArtificial Neural Network-
dc.subjectComplex problems-
dc.subjectComputational intelligence techniques-
dc.subjectDischarge waveforms-
dc.subjectDistribution transformer-
dc.subjectFailure rate-
dc.subjectHigh voltage-
dc.subjectInput variables-
dc.subjectOutput variables-
dc.subjectOver-voltages-
dc.subjectProject process-
dc.subjectVoltage variation-
dc.subjectBackpropagation-
dc.subjectElectric instrument transformers-
dc.subjectNeural networks-
dc.subjectTransformer substations-
dc.subjectPower transformers-
dc.titleA neural approach to evaluate the effect of lightning in power transformersen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionFederal University of Maranhão-
dc.description.affiliationUNESP-
dc.description.affiliationFederal University of Maranhão-
dc.description.affiliationUnespUNESP-
dc.identifier.doi10.2202/1553-779X.2095-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Emerging Electric Power Systems-
dc.identifier.scopus2-s2.0-70349918478-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.