You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/71282
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBressan, Glaucia M.-
dc.contributor.authorOliveira, Vilma A.-
dc.contributor.authorBoaventura, Maurilio-
dc.date.accessioned2014-05-27T11:24:03Z-
dc.date.accessioned2016-10-25T18:27:43Z-
dc.date.available2014-05-27T11:24:03Z-
dc.date.available2016-10-25T18:27:43Z-
dc.date.issued2009-12-01-
dc.identifierhttp://dx.doi.org/10.1109/CCA.2009.5280694-
dc.identifier.citationProceedings of the IEEE International Conference on Control Applications, p. 1798-1803.-
dc.identifier.urihttp://hdl.handle.net/11449/71282-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/71282-
dc.description.abstractThis paper proposes a fuzzy classification system for the risk of infestation by weeds in agricultural zones considering the variability of weeds. The inputs of the system are features of the infestation extracted from estimated maps by kriging for the weed seed production and weed coverage, and from the competitiveness, inferred from narrow and broad-leaved weeds. Furthermore, a Bayesian network classifier is used to extract rules from data which are compared to the fuzzy rule set obtained on the base of specialist knowledge. Results for the risk inference in a maize crop field are presented and evaluated by the estimated yield loss. © 2009 IEEE.en
dc.format.extent1798-1803-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAgricultural zones-
dc.subjectBayesian network classifiers-
dc.subjectClassification rules-
dc.subjectCrop fields-
dc.subjectFuzzy classification systems-
dc.subjectFuzzy rule set-
dc.subjectKriging-
dc.subjectRisk predictions-
dc.subjectWeed infestation-
dc.subjectWeed seed-
dc.subjectYield loss-
dc.subjectBayesian networks-
dc.subjectCompetition-
dc.subjectInference engines-
dc.subjectRisk perception-
dc.titleRisk prediction for weed infestation using classification rulesen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartamento de Engenharia Elétrica Universidade de São Paulo, 13566-590, São Carlos, SP-
dc.description.affiliationDepartamento de Ciências de Computação e Estatística Universidade Estadual Paulista, 15054-000, São José do Rio Preto-
dc.description.affiliationUnespDepartamento de Ciências de Computação e Estatística Universidade Estadual Paulista, 15054-000, São José do Rio Preto-
dc.identifier.doi10.1109/CCA.2009.5280694-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of the IEEE International Conference on Control Applications-
dc.identifier.scopus2-s2.0-74049100180-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.