Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/71282
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bressan, Glaucia M. | - |
dc.contributor.author | Oliveira, Vilma A. | - |
dc.contributor.author | Boaventura, Maurilio | - |
dc.date.accessioned | 2014-05-27T11:24:03Z | - |
dc.date.accessioned | 2016-10-25T18:27:43Z | - |
dc.date.available | 2014-05-27T11:24:03Z | - |
dc.date.available | 2016-10-25T18:27:43Z | - |
dc.date.issued | 2009-12-01 | - |
dc.identifier | http://dx.doi.org/10.1109/CCA.2009.5280694 | - |
dc.identifier.citation | Proceedings of the IEEE International Conference on Control Applications, p. 1798-1803. | - |
dc.identifier.uri | http://hdl.handle.net/11449/71282 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/71282 | - |
dc.description.abstract | This paper proposes a fuzzy classification system for the risk of infestation by weeds in agricultural zones considering the variability of weeds. The inputs of the system are features of the infestation extracted from estimated maps by kriging for the weed seed production and weed coverage, and from the competitiveness, inferred from narrow and broad-leaved weeds. Furthermore, a Bayesian network classifier is used to extract rules from data which are compared to the fuzzy rule set obtained on the base of specialist knowledge. Results for the risk inference in a maize crop field are presented and evaluated by the estimated yield loss. © 2009 IEEE. | en |
dc.format.extent | 1798-1803 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Agricultural zones | - |
dc.subject | Bayesian network classifiers | - |
dc.subject | Classification rules | - |
dc.subject | Crop fields | - |
dc.subject | Fuzzy classification systems | - |
dc.subject | Fuzzy rule set | - |
dc.subject | Kriging | - |
dc.subject | Risk predictions | - |
dc.subject | Weed infestation | - |
dc.subject | Weed seed | - |
dc.subject | Yield loss | - |
dc.subject | Bayesian networks | - |
dc.subject | Competition | - |
dc.subject | Inference engines | - |
dc.subject | Risk perception | - |
dc.title | Risk prediction for weed infestation using classification rules | en |
dc.type | outro | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Departamento de Engenharia Elétrica Universidade de São Paulo, 13566-590, São Carlos, SP | - |
dc.description.affiliation | Departamento de Ciências de Computação e Estatística Universidade Estadual Paulista, 15054-000, São José do Rio Preto | - |
dc.description.affiliationUnesp | Departamento de Ciências de Computação e Estatística Universidade Estadual Paulista, 15054-000, São José do Rio Preto | - |
dc.identifier.doi | 10.1109/CCA.2009.5280694 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Proceedings of the IEEE International Conference on Control Applications | - |
dc.identifier.scopus | 2-s2.0-74049100180 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.