You are in the accessibility menu

Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOishi, C. M.-
dc.contributor.authorMartins, F. P.-
dc.contributor.authorTome, M. F.-
dc.contributor.authorCuminato, J. A.-
dc.contributor.authorMcKee, S.-
dc.identifier.citationJournal of Non-newtonian Fluid Mechanics. Amsterdam: Elsevier B.V., v. 166, n. 3-4, p. 165-179, 2011.-
dc.description.abstractIn this paper we present a finite difference method for solving two-dimensional viscoelastic unsteady free surface flows governed by the single equation version of the eXtended Pom-Pom (XPP) model. The momentum equations are solved by a projection method which uncouples the velocity and pressure fields. We are interested in low Reynolds number flows and, to enhance the stability of the numerical method, an implicit technique for computing the pressure condition on the free surface is employed. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach while simultaneously calculating the correct normal stress condition on the free surface. The numerical code is validated by performing mesh refinement on a two-dimensional channel flow. Numerical results include an investigation of the influence of the parameters of the XPP equation on the extrudate swelling ratio and the simulation of the Barus effect for XPP fluids. (C) 2010 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipRoyal Society of Edinburgh-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectFree surface flowsen
dc.subjectImplicit techniquesen
dc.subjectViscoelastic fluidsen
dc.subjectPom-Pom modelen
dc.subjectFinite difference methoden
dc.subjectExtrudate swellen
dc.titleNumerical solution of the eXtended Pom-Pom model for viscoelastic free surface flowsen
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniv Strathclyde-
dc.description.affiliationUniv Estadual Paulista, Dept Matemat Estat & Computacao, Presidente Prudente, Brazil-
dc.description.affiliationUniv São Paulo, Dept Appl Math & Stat, São Carlos, SP, Brazil-
dc.description.affiliationUniv Strathclyde, Dept Math & Stat, Glasgow, Lanark, Scotland-
dc.description.affiliationUnespUniv Estadual Paulista, Dept Matemat Estat & Computacao, Presidente Prudente, Brazil-
dc.description.sponsorshipIdFAPESP: 04/16064-9-
dc.description.sponsorshipIdFAPESP: 09/15892-9-
dc.description.sponsorshipIdCNPq: 304422/2007-0-
dc.description.sponsorshipIdCNPq: 470764/2007-4-
dc.description.sponsorshipIdCNPq: 477858/2009-0-
dc.rights.accessRightsAcesso aberto-
dc.relation.ispartofJournal of Non-Newtonian Fluid Mechanics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.