You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/71483
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmorim, E. A.-
dc.contributor.authorLima, F. G M-
dc.contributor.authorRomero, R.-
dc.contributor.authorMantovani, J. R S-
dc.date.accessioned2014-05-27T11:24:34Z-
dc.date.accessioned2016-10-25T18:28:09Z-
dc.date.available2014-05-27T11:24:34Z-
dc.date.available2016-10-25T18:28:09Z-
dc.date.issued2009-12-17-
dc.identifierhttp://dx.doi.org/10.1109/PES.2009.5275236-
dc.identifier.citation2009 IEEE Power and Energy Society General Meeting, PES '09.-
dc.identifier.urihttp://hdl.handle.net/11449/71483-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/71483-
dc.description.abstractIn this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.en
dc.language.isoeng-
dc.sourceScopus-
dc.subjectDecomposition methods-
dc.subjectEvolutionary algorithm-
dc.subjectMultiarea optimal power flow-
dc.subjectMultiobjective optimization-
dc.subjectDiscrete variables-
dc.subjectMulti objective evolutionary algorithms-
dc.subjectMulti-objective optimization problem-
dc.subjectNonlinear constrained optimization problems-
dc.subjectObjective functions-
dc.subjectOptimal dispatch-
dc.subjectOptimal power flow problem-
dc.subjectOptimal power flows-
dc.subjectSub-problems-
dc.subjectSuboptimal solution-
dc.subjectTest systems-
dc.subjectAcoustic generators-
dc.subjectConstrained optimization-
dc.subjectElectric load flow-
dc.subjectEvolutionary algorithms-
dc.subjectOperations research-
dc.subjectPotential energy-
dc.subjectPotential energy surfaces-
dc.subjectPower electronics-
dc.titleMultiarea optimal power flow using multiobjective evolutionary algorithmen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Mato Grosso do Sul (UFMS)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Federal de Mato Grosso do Sul (UFMS) Department of Electrical Engineering, 15385-000 Ilha Solteira-SP-
dc.description.affiliationUniversidade Estadual Paulista - UNESP Department of Electrical Engineering, 15385-000 Ilha Solteira-SP-
dc.description.affiliationUnespUniversidade Estadual Paulista - UNESP Department of Electrical Engineering, 15385-000 Ilha Solteira-SP-
dc.identifier.doi10.1109/PES.2009.5275236-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartof2009 IEEE Power and Energy Society General Meeting, PES '09-
dc.identifier.scopus2-s2.0-71849103813-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.