Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/71779
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorMarana, Aparecido Nilceu-
dc.contributor.authorGuilherme, Ivan Rizzo-
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorFerreira, Marystela-
dc.contributor.authorMiura, K.-
dc.contributor.authorTorres, F. A C-
dc.date.accessioned2014-05-27T11:24:44Z-
dc.date.accessioned2016-10-25T18:28:49Z-
dc.date.available2014-05-27T11:24:44Z-
dc.date.available2016-10-25T18:28:49Z-
dc.date.issued2010-07-07-
dc.identifierhttp://dx.doi.org/10.2118/128916-MS-
dc.identifier.citationSPE/IADC Drilling Conference, Proceedings, v. 2, p. 1123-1130.-
dc.identifier.urihttp://hdl.handle.net/11449/71779-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/71779-
dc.description.abstractCuttings return analysis is an important tool to detect and prevent problems during the petroleum well drilling process. Several measurements and tools have been developed for drilling problems detection, including mud logging, PWD and downhole torque information. Cuttings flow meters were developed in the past to provide information regarding cuttings return at the shale shakers. Their use, however, significantly impact the operation including rig space issues, interferences in geological analysis besides, additional personel required. This article proposes a non intrusive system to analyze the cuttings concentration at the shale shakers, which can indicate problems during drilling process, such as landslide, the collapse of the well borehole walls. Cuttings images are acquired by a high definition camera installed above the shakers and sent to a computer coupled with a data analysis system which aims the quantification and closure of a cuttings material balance in the well surface system domain. No additional people at the rigsite are required to operate the system. Modern Artificial intelligence techniques are used for pattern recognition and data analysis. Techniques include the Optimum-Path Forest (OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC). Field test results conducted on offshore floating vessels are presented. Results show the robustness of the proposed system, which can be also integrated with other data to improve the efficiency of drilling problems detection. Copyright 2010, IADC/SPE Drilling Conference and Exhibition.en
dc.format.extent1123-1130-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectArtificial intelligence techniques-
dc.subjectArtificial Neural Network-
dc.subjectBayesian classifier-
dc.subjectBorehole wall-
dc.subjectData analysis-
dc.subjectData analysis system-
dc.subjectDownholes-
dc.subjectDrilled cuttings-
dc.subjectDrilling problems-
dc.subjectDrilling process-
dc.subjectField test-
dc.subjectGeological analysis-
dc.subjectHigh definition-
dc.subjectMaterial balance-
dc.subjectMulti-layer perceptrons-
dc.subjectNon-intrusive-
dc.subjectOffshore floating-
dc.subjectShale shakers-
dc.subjectSurface systems-
dc.subjectData reduction-
dc.subjectIntelligent systems-
dc.subjectMud logging-
dc.subjectNeural networks-
dc.subjectOffshore oil wells-
dc.subjectOil wells-
dc.subjectPattern recognition systems-
dc.subjectPetroleum industry-
dc.subjectSailing vessels-
dc.subjectShale-
dc.subjectSupport vector machines-
dc.subjectWell drilling-
dc.titleAn intelligent system to detect drilling problems through drilled cuttings return analysisen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionPETROBRAS-
dc.description.affiliationSão Paulo State University-
dc.description.affiliationPETROBRAS-
dc.description.affiliationUnespSão Paulo State University-
dc.identifier.doi10.2118/128916-MS-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofSPE/IADC Drilling Conference, Proceedings-
dc.identifier.scopus2-s2.0-77954186253-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.