You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/71782
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPeres, F. A.-
dc.contributor.authorOliveira, F. R.-
dc.contributor.authorNeves, L. A.-
dc.contributor.authorGodoy, M. F.-
dc.date.accessioned2014-05-27T11:24:44Z-
dc.date.accessioned2016-10-25T18:28:50Z-
dc.date.available2014-05-27T11:24:44Z-
dc.date.available2016-10-25T18:28:50Z-
dc.date.issued2010-07-09-
dc.identifierhttp://dx.doi.org/10.1109/PAHCE.2010.5474606-
dc.identifier.citationPan American Health Care Exchanges, PAHCE 2010, p. 38-42.-
dc.identifier.urihttp://hdl.handle.net/11449/71782-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/71782-
dc.description.abstractThe digital image processing has been applied in several areas, especially where it is necessary use tools for feature extraction and to get patterns of the studied images. In an initial stage, the segmentation is used to separate the image in parts that represents a interest object, that may be used in a specific study. There are several methods that intends to perform such task, but is difficult to find a method that can easily adapt to different type of images, that often are very complex or specific. To resolve this problem, this project aims to presents a adaptable segmentation method, that can be applied to different type of images, providing an better segmentation. The proposed method is based in a model of automatic multilevel thresholding and considers techniques of group histogram quantization, analysis of the histogram slope percentage and calculation of maximum entropy to define the threshold. The technique was applied to segment the cell core and potential rejection of tissue in myocardial images of biopsies from cardiac transplant. The results are significant in comparison with those provided by one of the best known segmentation methods available in the literature. © 2010 IEEE.en
dc.format.extent38-42-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectCardiac imagens-
dc.subjectSegmentation-
dc.subjectThresholding-
dc.subjectAutomatic segmentations-
dc.subjectDigital image-
dc.subjectDigital image processing-
dc.subjectInitial stages-
dc.subjectMaximum entropy-
dc.subjectMedical images-
dc.subjectMultilevel thresholding-
dc.subjectSegmentation methods-
dc.subjectDigital image storage-
dc.subjectFeature extraction-
dc.subjectGraphic methods-
dc.subjectHealth care-
dc.subjectHeart-
dc.subjectMedical imaging-
dc.subjectImage segmentation-
dc.titleAutomatic segmentation of digital images applied in cardiac medical imagesen
dc.typeoutro-
dc.contributor.institutionFaculdade de Tecnologia de São José do Rio Preto-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionFaculdade de Medicina de São José do Rio Preto (FAMERP)-
dc.description.affiliationFaculdade de Tecnologia de São José do Rio Preto, São José do Rio Preto, SP-
dc.description.affiliationUniversidade Estadual Paulista Departamento de Estatística, Matemática Aplicada e Computação, Rio Claro, SP-
dc.description.affiliationFaculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP-
dc.description.affiliationUnespUniversidade Estadual Paulista Departamento de Estatística, Matemática Aplicada e Computação, Rio Claro, SP-
dc.identifier.doi10.1109/PAHCE.2010.5474606-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPan American Health Care Exchanges, PAHCE 2010-
dc.identifier.scopus2-s2.0-77954253661-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.