You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/71955
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorMarana, Aparecido Nilceu-
dc.contributor.authorSpadotto, André A.-
dc.contributor.authorGuido, Rodrigo C.-
dc.contributor.authorFalcão, Alexandre X.-
dc.date.accessioned2014-05-27T11:24:50Z-
dc.date.accessioned2016-10-25T18:30:20Z-
dc.date.available2014-05-27T11:24:50Z-
dc.date.available2016-10-25T18:30:20Z-
dc.date.issued2010-11-08-
dc.identifierhttp://dx.doi.org/10.1109/ICASSP.2010.5495695-
dc.identifier.citationICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, p. 2190-2193.-
dc.identifier.issn1520-6149-
dc.identifier.urihttp://hdl.handle.net/11449/71955-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/71955-
dc.description.abstractThe applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE.en
dc.format.extent2190-2193-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectNeural networks-
dc.subjectPattern recognition-
dc.subjectSignal classification-
dc.subjectSpeech recognition-
dc.subjectArtificial neural networks-
dc.subjectData sets-
dc.subjectMachine-learning-
dc.subjectPattern recognition techniques-
dc.subjectProcessing systems-
dc.subjectRealtime processing-
dc.subjectSpoken languages-
dc.subjectState-of-the-art system-
dc.subjectTraining procedures-
dc.subjectTraining time-
dc.subjectVowel recognition-
dc.subjectBiometrics-
dc.subjectClassifiers-
dc.subjectComputational linguistics-
dc.subjectInformation theory-
dc.subjectReal time systems-
dc.subjectSignal processing-
dc.subjectSpeech processing-
dc.subjectSupport vector machines-
dc.subjectTelecommunication equipment-
dc.titleRobust and fast vowel recognition using optimum-path foresten
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationSão Paulo State University Computer Science Department-
dc.description.affiliationUniversity of São Paulo Physics Institute of São Carlos-
dc.description.affiliationUniversity of Campinas Institute of Computing-
dc.description.affiliationUnespSão Paulo State University Computer Science Department-
dc.identifier.doi10.1109/ICASSP.2010.5495695-
dc.identifier.wosWOS:000287096002042-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings-
dc.identifier.scopus2-s2.0-78049379155-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.