Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/71961
Título: 
Optimizing optimum-path forest classification for huge datasets
Autor(es): 
Instituição: 
  • Universidade Estadual Paulista (UNESP)
  • Universidade Estadual de Campinas (UNICAMP)
ISSN: 
1051-4651
Resumo: 
Traditional pattern recognition techniques can not handle the classification of large datasets with both efficiency and effectiveness. In this context, the Optimum-Path Forest (OPF) classifier was recently introduced, trying to achieve high recognition rates and low computational cost. Although OPF was much faster than Support Vector Machines for training, it was slightly slower for classification. In this paper, we present the Efficient OPF (EOPF), which is an enhanced and faster version of the traditional OPF, and validate it for the automatic recognition of white matter and gray matter in magnetic resonance images of the human brain. © 2010 IEEE.
Data de publicação: 
18-Nov-2010
Citação: 
Proceedings - International Conference on Pattern Recognition, p. 4162-4165.
Duração: 
4162-4165
Palavras-chaves: 
  • Brain image classification
  • Optimum-Path forest
  • Supervised classification
  • Support Vector machines
  • Automatic recognition
  • Brain images
  • Computational costs
  • Data sets
  • Forest classification
  • Gray matter
  • Human brain
  • Large datasets
  • Magnetic resonance images
  • Pattern recognition techniques
  • Recognition rates
  • Support vector
  • White matter
  • Image analysis
  • Image classification
  • Magnetic resonance
  • Magnetic resonance imaging
  • Support vector machines
  • Classification (of information)
Fonte: 
http://dx.doi.org/10.1109/ICPR.2010.1012
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/71961
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.