You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/71961
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorCappabianco, Fábio A. M.-
dc.contributor.authorFalcão, Alexandre X.-
dc.date.accessioned2014-05-27T11:24:50Z-
dc.date.accessioned2016-10-25T18:30:20Z-
dc.date.available2014-05-27T11:24:50Z-
dc.date.available2016-10-25T18:30:20Z-
dc.date.issued2010-11-18-
dc.identifierhttp://dx.doi.org/10.1109/ICPR.2010.1012-
dc.identifier.citationProceedings - International Conference on Pattern Recognition, p. 4162-4165.-
dc.identifier.issn1051-4651-
dc.identifier.urihttp://hdl.handle.net/11449/71961-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/71961-
dc.description.abstractTraditional pattern recognition techniques can not handle the classification of large datasets with both efficiency and effectiveness. In this context, the Optimum-Path Forest (OPF) classifier was recently introduced, trying to achieve high recognition rates and low computational cost. Although OPF was much faster than Support Vector Machines for training, it was slightly slower for classification. In this paper, we present the Efficient OPF (EOPF), which is an enhanced and faster version of the traditional OPF, and validate it for the automatic recognition of white matter and gray matter in magnetic resonance images of the human brain. © 2010 IEEE.en
dc.format.extent4162-4165-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectBrain image classification-
dc.subjectOptimum-Path forest-
dc.subjectSupervised classification-
dc.subjectSupport Vector machines-
dc.subjectAutomatic recognition-
dc.subjectBrain images-
dc.subjectComputational costs-
dc.subjectData sets-
dc.subjectForest classification-
dc.subjectGray matter-
dc.subjectHuman brain-
dc.subjectLarge datasets-
dc.subjectMagnetic resonance images-
dc.subjectPattern recognition techniques-
dc.subjectRecognition rates-
dc.subjectSupport vector-
dc.subjectWhite matter-
dc.subjectImage analysis-
dc.subjectImage classification-
dc.subjectMagnetic resonance-
dc.subjectMagnetic resonance imaging-
dc.subjectSupport vector machines-
dc.subjectClassification (of information)-
dc.titleOptimizing optimum-path forest classification for huge datasetsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationDepartment of Computing Universidade Estadual Paulista (UNESP), Bauru-
dc.description.affiliationInstitute of Computing University of Campinas, Campinas-
dc.description.affiliationUnespDepartment of Computing Universidade Estadual Paulista (UNESP), Bauru-
dc.identifier.doi10.1109/ICPR.2010.1012-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings - International Conference on Pattern Recognition-
dc.identifier.scopus2-s2.0-78149477256-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.