You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/71965
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFurter, Jacques-Élie-
dc.contributor.authorSitta, Angela Maria-
dc.date.accessioned2014-05-27T11:24:50Z-
dc.date.accessioned2016-10-25T18:30:22Z-
dc.date.available2014-05-27T11:24:50Z-
dc.date.available2016-10-25T18:30:22Z-
dc.date.issued2010-11-22-
dc.identifierhttp://dx.doi.org/10.5802/aif.2558-
dc.identifier.citationAnnales de l'Institut Fourier, v. 60, n. 4, p. 1363-1400, 2010.-
dc.identifier.issn0373-0956-
dc.identifier.urihttp://hdl.handle.net/11449/71965-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/71965-
dc.description.abstractWe implement a singularity theory approach, the path formulation, to classify D3-equivariant bifurcation problems of corank 2, with one or two distinguished parameters, and their perturbations. The bifurcation diagrams are identified with sections over paths in the parameter space of a Ba-miniversal unfolding f0 of their cores. Equivalence between paths is given by diffeomorphisms liftable over the projection from the zero-set of F0 onto its unfolding parameter space. We apply our results to degenerate bifurcation of period-3 subharmonics in reversible systems, in particular in the 1:1-resonance.en
dc.format.extent1363-1400-
dc.language.isoeng-
dc.sourceScopus-
dc.subject1:1-resonance-
dc.subjectDegenerate bifurcation-
dc.subjectEquivariant bifurcation-
dc.subjectPath formulation-
dc.subjectReversible systems-
dc.subjectSingularity theory-
dc.subjectSubharmonic bifurcation-
dc.titlePath formulation for multiparameter D3-equivariant bifurcation problemsen
dc.typeoutro-
dc.contributor.institutionBrunel University-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationBrunel University Department of Mathematical Sciences, Uxbridge UB8 3PH-
dc.description.affiliationUniversidade Estadual Paulista - UNESP Departamento de Matemática - IBILCE Campus de São José, Rio Preto - SP-
dc.description.affiliationUnespUniversidade Estadual Paulista - UNESP Departamento de Matemática - IBILCE Campus de São José, Rio Preto - SP-
dc.identifier.doi10.5802/aif.2558-
dc.rights.accessRightsAcesso aberto-
dc.relation.ispartofAnnales de l'Institut Fourier-
dc.identifier.scopus2-s2.0-78349232386-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.