Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/72041
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Spadoto, André A. | - |
dc.contributor.author | Guido, Rodrigo C. | - |
dc.contributor.author | Papa, João Paulo | - |
dc.contributor.author | Falcão, Alexandre X. | - |
dc.date.accessioned | 2014-05-27T11:25:19Z | - |
dc.date.accessioned | 2016-10-25T18:32:53Z | - |
dc.date.available | 2014-05-27T11:25:19Z | - |
dc.date.available | 2016-10-25T18:32:53Z | - |
dc.date.issued | 2010-12-01 | - |
dc.identifier | http://dx.doi.org/10.1109/IEMBS.2010.5627634 | - |
dc.identifier.citation | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10, p. 6087-6090. | - |
dc.identifier.uri | http://hdl.handle.net/11449/72041 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/72041 | - |
dc.description.abstract | Artificial intelligence techniques have been extensively used for the identification of several disorders related with the voice signal analysis, such as Parkinson's disease (PD). However, some of these techniques flaw by assuming some separability in the original feature space or even so in the one induced by a kernel mapping. In this paper we propose the PD automatic recognition by means of Optimum-Path Forest (OPF), which is a new recently developed pattern recognition technique that does not assume any shape/separability of the classes/feature space. The experiments showed that OPF outperformed Support Vector Machines, Artificial Neural Networks and other commonly used supervised classification techniques for PD identification. © 2010 IEEE. | en |
dc.format.extent | 6087-6090 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Artificial intelligence techniques | - |
dc.subject | Artificial Neural Network | - |
dc.subject | Automatic recognition | - |
dc.subject | Commonly used | - |
dc.subject | Feature space | - |
dc.subject | Kernel mapping | - |
dc.subject | Parkinson's disease | - |
dc.subject | Pattern recognition techniques | - |
dc.subject | PD identification | - |
dc.subject | Supervised classification | - |
dc.subject | Diseases | - |
dc.subject | Pattern recognition | - |
dc.subject | Neural networks | - |
dc.title | Parkinson's disease identification through Optimum-Path Forest | en |
dc.type | outro | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Institute of Computing | - |
dc.description.affiliation | Institute of Physics at São Carlos University of São Paulo, São Carlos | - |
dc.description.affiliation | Department of Computing Universidade Estadual Paulista (UNESP), Bauru | - |
dc.description.affiliation | Institute of Computing, Campinas | - |
dc.description.affiliationUnesp | Department of Computing Universidade Estadual Paulista (UNESP), Bauru | - |
dc.identifier.doi | 10.1109/IEMBS.2010.5627634 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10 | - |
dc.identifier.scopus | 2-s2.0-78650818582 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.