Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/72041
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorSpadoto, André A.-
dc.contributor.authorGuido, Rodrigo C.-
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorFalcão, Alexandre X.-
dc.date.accessioned2014-05-27T11:25:19Z-
dc.date.accessioned2016-10-25T18:32:53Z-
dc.date.available2014-05-27T11:25:19Z-
dc.date.available2016-10-25T18:32:53Z-
dc.date.issued2010-12-01-
dc.identifierhttp://dx.doi.org/10.1109/IEMBS.2010.5627634-
dc.identifier.citation2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10, p. 6087-6090.-
dc.identifier.urihttp://hdl.handle.net/11449/72041-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/72041-
dc.description.abstractArtificial intelligence techniques have been extensively used for the identification of several disorders related with the voice signal analysis, such as Parkinson's disease (PD). However, some of these techniques flaw by assuming some separability in the original feature space or even so in the one induced by a kernel mapping. In this paper we propose the PD automatic recognition by means of Optimum-Path Forest (OPF), which is a new recently developed pattern recognition technique that does not assume any shape/separability of the classes/feature space. The experiments showed that OPF outperformed Support Vector Machines, Artificial Neural Networks and other commonly used supervised classification techniques for PD identification. © 2010 IEEE.en
dc.format.extent6087-6090-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectArtificial intelligence techniques-
dc.subjectArtificial Neural Network-
dc.subjectAutomatic recognition-
dc.subjectCommonly used-
dc.subjectFeature space-
dc.subjectKernel mapping-
dc.subjectParkinson's disease-
dc.subjectPattern recognition techniques-
dc.subjectPD identification-
dc.subjectSupervised classification-
dc.subjectDiseases-
dc.subjectPattern recognition-
dc.subjectNeural networks-
dc.titleParkinson's disease identification through Optimum-Path Foresten
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionInstitute of Computing-
dc.description.affiliationInstitute of Physics at São Carlos University of São Paulo, São Carlos-
dc.description.affiliationDepartment of Computing Universidade Estadual Paulista (UNESP), Bauru-
dc.description.affiliationInstitute of Computing, Campinas-
dc.description.affiliationUnespDepartment of Computing Universidade Estadual Paulista (UNESP), Bauru-
dc.identifier.doi10.1109/IEMBS.2010.5627634-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartof2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10-
dc.identifier.scopus2-s2.0-78650818582-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.