You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/72224
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastelo-Fernández, César-
dc.contributor.authorDe Rezende, Pedro J.-
dc.contributor.authorFalcão, Alexandre X.-
dc.contributor.authorPapa, João Paulo-
dc.date.accessioned2014-05-27T11:25:25Z-
dc.date.accessioned2016-10-25T18:33:19Z-
dc.date.available2014-05-27T11:25:25Z-
dc.date.available2016-10-25T18:33:19Z-
dc.date.issued2010-12-15-
dc.identifierhttp://dx.doi.org/10.1007/978-3-642-16687-7_62-
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6419 LNCS, p. 467-475.-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttp://hdl.handle.net/11449/72224-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/72224-
dc.description.abstractIn this work, a new approach for supervised pattern recognition is presented which improves the learning algorithm of the Optimum-Path Forest classifier (OPF), centered on detection and elimination of outliers in the training set. Identification of outliers is based on a penalty computed for each sample in the training set from the corresponding number of imputable false positive and false negative classification of samples. This approach enhances the accuracy of OPF while still gaining in classification time, at the expense of a slight increase in training time. © 2010 Springer-Verlag.en
dc.format.extent467-475-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectLearning Algorithm-
dc.subjectOptimum-Path Forest Classifier-
dc.subjectOutlier Detection-
dc.subjectSupervised Classification-
dc.subjectClassification time-
dc.subjectFalse negatives-
dc.subjectFalse positive-
dc.subjectForest classifiers-
dc.subjectLarge datasets-
dc.subjectNew approaches-
dc.subjectSupervised classification-
dc.subjectSupervised classifiers-
dc.subjectSupervised pattern recognition-
dc.subjectTraining sets-
dc.subjectTraining time-
dc.subjectClassification (of information)-
dc.subjectClassifiers-
dc.subjectComputer vision-
dc.subjectData mining-
dc.subjectLearning algorithms-
dc.titleImproving the accuracy of the optimum-path forest supervised classifier for large datasetsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationInstitute of Computing State University of Campinas- UNICAMP, Campinas-
dc.description.affiliationDepartment of Computing São Paulo State University-UNESP, Baurú-
dc.description.affiliationUnespDepartment of Computing São Paulo State University-UNESP, Baurú-
dc.identifier.doi10.1007/978-3-642-16687-7_62-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
dc.identifier.scopus2-s2.0-78649978375-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.