Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/72231
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorDos Santos, Fabiano Fernandes-
dc.contributor.authorDe Carvalho, Veronica Oliveira-
dc.contributor.authorOliveira Rezende, Solange-
dc.date.accessioned2014-05-27T11:25:26Z-
dc.date.accessioned2016-10-25T18:33:20Z-
dc.date.available2014-05-27T11:25:26Z-
dc.date.available2016-10-25T18:33:20Z-
dc.date.issued2010-12-16-
dc.identifierhttp://dx.doi.org/10.1007/978-3-642-16773-7_14-
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6438 LNAI, n. PART 2, p. 163-176, 2010.-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttp://hdl.handle.net/11449/72231-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/72231-
dc.description.abstractOne way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels have to be built using only the terms in the documents of the collection. This paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical document clusters. The candidates are processed by a classical method to generate the labels. The idea of the proposed method is to process each parent-child relationship of the nodes as an antecedent-consequent relationship of association rules. The experimental results show that the proposed method can improve the precision and recall of labels obtained by classical methods. © 2010 Springer-Verlag.en
dc.format.extent163-176-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectassociation rules-
dc.subjectlabel hierarchical clustering-
dc.subjecttext mining-
dc.subjectClassical methods-
dc.subjectHierarchical document-
dc.subjectPrecision and recall-
dc.subjectSearch and retrieval-
dc.subjectStructural representation-
dc.subjectText mining-
dc.subjectArtificial intelligence-
dc.subjectKnowledge representation-
dc.subjectSoft computing-
dc.subjectAssociation rules-
dc.titleSelecting candidate labels for hierarchical document clusters using association rulesen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationInstituto de Ciências Matemáticas e de Computaçã o Universidade de São Paulo (USP)-
dc.description.affiliationInstituto de Geociências e Ciências Exatas UNESP - Univ. Estadual Paulista-
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas UNESP - Univ. Estadual Paulista-
dc.identifier.doi10.1007/978-3-642-16773-7_14-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
dc.identifier.scopus2-s2.0-78649991980-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.