You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/72231
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDos Santos, Fabiano Fernandes-
dc.contributor.authorDe Carvalho, Veronica Oliveira-
dc.contributor.authorOliveira Rezende, Solange-
dc.date.accessioned2014-05-27T11:25:26Z-
dc.date.accessioned2016-10-25T18:33:20Z-
dc.date.available2014-05-27T11:25:26Z-
dc.date.available2016-10-25T18:33:20Z-
dc.date.issued2010-12-16-
dc.identifierhttp://dx.doi.org/10.1007/978-3-642-16773-7_14-
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6438 LNAI, n. PART 2, p. 163-176, 2010.-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttp://hdl.handle.net/11449/72231-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/72231-
dc.description.abstractOne way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels have to be built using only the terms in the documents of the collection. This paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical document clusters. The candidates are processed by a classical method to generate the labels. The idea of the proposed method is to process each parent-child relationship of the nodes as an antecedent-consequent relationship of association rules. The experimental results show that the proposed method can improve the precision and recall of labels obtained by classical methods. © 2010 Springer-Verlag.en
dc.format.extent163-176-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectassociation rules-
dc.subjectlabel hierarchical clustering-
dc.subjecttext mining-
dc.subjectClassical methods-
dc.subjectHierarchical document-
dc.subjectPrecision and recall-
dc.subjectSearch and retrieval-
dc.subjectStructural representation-
dc.subjectText mining-
dc.subjectArtificial intelligence-
dc.subjectKnowledge representation-
dc.subjectSoft computing-
dc.subjectAssociation rules-
dc.titleSelecting candidate labels for hierarchical document clusters using association rulesen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationInstituto de Ciências Matemáticas e de Computaçã o Universidade de São Paulo (USP)-
dc.description.affiliationInstituto de Geociências e Ciências Exatas UNESP - Univ. Estadual Paulista-
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas UNESP - Univ. Estadual Paulista-
dc.identifier.doi10.1007/978-3-642-16773-7_14-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
dc.identifier.scopus2-s2.0-78649991980-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.