You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/72251
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRibeiro, Willian C.-
dc.contributor.authorJoanni, Ednan-
dc.contributor.authorSavu, Raluca-
dc.contributor.authorBueno, Paulo Roberto-
dc.date.accessioned2014-05-27T11:25:26Z-
dc.date.accessioned2016-10-25T18:33:28Z-
dc.date.available2014-05-27T11:25:26Z-
dc.date.available2016-10-25T18:33:28Z-
dc.date.issued2011-01-01-
dc.identifierhttp://dx.doi.org/10.1016/j.ssc.2010.10.034-
dc.identifier.citationSolid State Communications, v. 151, n. 2, p. 173-176, 2011.-
dc.identifier.issn0038-1098-
dc.identifier.urihttp://hdl.handle.net/11449/72251-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/72251-
dc.description.abstractIn the present communication, by using dielectric spectroscopy measurement, the correlations between Nanosized Barrier Layer Capacitance (NBLC) (Bueno et al. (2009) [7]) and the high frequency polaronic near-Debye dipolar relaxation found in CaCu3Ti4O12 compounds was discussed. The polaronic process was confirmed to be closely associated with the ultrahigh dielectric features of CaCu3Ti4O12 materials and its concomitant dielectric loss. Herein, the shift in relaxation frequency as a function of temperature was used for calculating the activation energy for hopping electronic conduction. The value obtained was 33 meV, an energy whose magnitude is compatible and confirmed the hypothesis of polaronic features for this high frequency dipolar relaxation process. Furthermore, it is shown that the nanosized barrier inferred from the NBLC model has a polaronic feature with dielectric permittivity exiting orthogonally to dielectric loss, a phenomenological pattern that contradicts the normally observed behavior for traditional dielectrics but explain the dielectric and conductivity feature of CaCu3Ti4O12 compounds. © 2010 Elsevier Ltd. All rights reserved.en
dc.format.extent173-176-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectA. CCTO-
dc.subjectC. Stacking faults-
dc.subjectD. Dielectric relaxation-
dc.subjectD. NBLC model-
dc.subjectBarrier layers-
dc.subjectDielectric permittivities-
dc.subjectDipolar relaxation-
dc.subjectElectronic conduction-
dc.subjectHigh frequency-
dc.subjectNano-sized-
dc.subjectNanoscale effects-
dc.subjectPolaronic features-
dc.subjectRelaxation frequency-
dc.subjectSpectroscopy measurements-
dc.subjectActivation energy-
dc.subjectDielectric devices-
dc.subjectDielectric losses-
dc.subjectDielectric relaxation-
dc.subjectElectron energy loss spectroscopy-
dc.subjectStacking faults-
dc.subjectDielectric materials-
dc.titleNanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compoundsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Estadual Paulista Instituto de Química Departamento de Físico-Química, P.O. Box 355, 14800-900, Araraquara, Soã Paulo-
dc.description.affiliationUnespUniversidade Estadual Paulista Instituto de Química Departamento de Físico-Química, P.O. Box 355, 14800-900, Araraquara, Soã Paulo-
dc.identifier.doi10.1016/j.ssc.2010.10.034-
dc.rights.accessRightsAcesso aberto-
dc.identifier.file2-s2.0-78650512586.pdf-
dc.relation.ispartofSolid State Communications-
dc.identifier.scopus2-s2.0-78650512586-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.