Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/72401
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lagos, R. E. | - |
dc.contributor.author | Simes, Tania P. | - |
dc.date.accessioned | 2014-05-27T11:25:51Z | - |
dc.date.accessioned | 2016-10-25T18:33:51Z | - |
dc.date.available | 2014-05-27T11:25:51Z | - |
dc.date.available | 2016-10-25T18:33:51Z | - |
dc.date.issued | 2011-05-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.physa.2010.12.032 | - |
dc.identifier.citation | Physica A: Statistical Mechanics and its Applications, v. 390, n. 9, p. 1591-1601, 2011. | - |
dc.identifier.issn | 0378-4371 | - |
dc.identifier.uri | http://hdl.handle.net/11449/72401 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/72401 | - |
dc.description.abstract | We consider a charged Brownian gas under the influence of external and non-uniform electric, magnetic and mechanical fields, immersed in a non-uniform bath temperature. With the collision time as an expansion parameter, we study the solution to the associated Kramers equation, including a linear reactive term. To the first order we obtain the asymptotic (overdamped) regime, governed by transport equations, namely: for the particle density, a Smoluchowski- reactive like equation; for the particle's momentum density, a generalized Ohm's-like equation; and for the particle's energy density, a MaxwellCattaneo-like equation. Defining a nonequilibrium temperature as the mean kinetic energy density, and introducing Boltzmann's entropy density via the one particle distribution function, we present a complete thermohydrodynamical picture for a charged Brownian gas. We probe the validity of the local equilibrium approximation, Onsager relations, variational principles associated to the entropy production, and apply our results to: carrier transport in semiconductors, hot carriers and Brownian motors. Finally, we outline a method to incorporate non-linear reactive kinetics and a mean field approach to interacting Brownian particles. © 2011 Elsevier B.V. All rights reserved. | en |
dc.format.extent | 1591-1601 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Brownian motion | - |
dc.subject | Brownian motors | - |
dc.subject | Carrier transport | - |
dc.subject | Dissipative dynamics | - |
dc.subject | Evolution of nonequilibrium systems | - |
dc.subject | Kramers equation | - |
dc.subject | Smoluchowski equation | - |
dc.subject | Kramers equations | - |
dc.subject | Distribution functions | - |
dc.subject | Entropy | - |
dc.subject | Variational techniques | - |
dc.subject | Brownian movement | - |
dc.title | Charged Brownian particles: Kramers and Smoluchowski equations and the hydrothermodynamical picture | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.description.affiliation | Departamento de Fsica IGCE UNESP (Universidade Estadual Paulista), CP. 178, 13500-970 Rio Claro SP | - |
dc.description.affiliation | Instituto de Fsica Gleb Wataghin UNICAMP (Universidade Estadual de Campinas), CP. 6165, 13083-970 Campinas, SP | - |
dc.description.affiliationUnesp | Departamento de Fsica IGCE UNESP (Universidade Estadual Paulista), CP. 178, 13500-970 Rio Claro SP | - |
dc.identifier.doi | 10.1016/j.physa.2010.12.032 | - |
dc.rights.accessRights | Acesso aberto | - |
dc.identifier.file | 2-s2.0-79952107797.pdf | - |
dc.relation.ispartof | Physica A: Statistical Mechanics and Its Applications | - |
dc.identifier.scopus | 2-s2.0-79952107797 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.