You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/72401
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLagos, R. E.-
dc.contributor.authorSimes, Tania P.-
dc.date.accessioned2014-05-27T11:25:51Z-
dc.date.accessioned2016-10-25T18:33:51Z-
dc.date.available2014-05-27T11:25:51Z-
dc.date.available2016-10-25T18:33:51Z-
dc.date.issued2011-05-01-
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2010.12.032-
dc.identifier.citationPhysica A: Statistical Mechanics and its Applications, v. 390, n. 9, p. 1591-1601, 2011.-
dc.identifier.issn0378-4371-
dc.identifier.urihttp://hdl.handle.net/11449/72401-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/72401-
dc.description.abstractWe consider a charged Brownian gas under the influence of external and non-uniform electric, magnetic and mechanical fields, immersed in a non-uniform bath temperature. With the collision time as an expansion parameter, we study the solution to the associated Kramers equation, including a linear reactive term. To the first order we obtain the asymptotic (overdamped) regime, governed by transport equations, namely: for the particle density, a Smoluchowski- reactive like equation; for the particle's momentum density, a generalized Ohm's-like equation; and for the particle's energy density, a MaxwellCattaneo-like equation. Defining a nonequilibrium temperature as the mean kinetic energy density, and introducing Boltzmann's entropy density via the one particle distribution function, we present a complete thermohydrodynamical picture for a charged Brownian gas. We probe the validity of the local equilibrium approximation, Onsager relations, variational principles associated to the entropy production, and apply our results to: carrier transport in semiconductors, hot carriers and Brownian motors. Finally, we outline a method to incorporate non-linear reactive kinetics and a mean field approach to interacting Brownian particles. © 2011 Elsevier B.V. All rights reserved.en
dc.format.extent1591-1601-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectBrownian motion-
dc.subjectBrownian motors-
dc.subjectCarrier transport-
dc.subjectDissipative dynamics-
dc.subjectEvolution of nonequilibrium systems-
dc.subjectKramers equation-
dc.subjectSmoluchowski equation-
dc.subjectKramers equations-
dc.subjectDistribution functions-
dc.subjectEntropy-
dc.subjectVariational techniques-
dc.subjectBrownian movement-
dc.titleCharged Brownian particles: Kramers and Smoluchowski equations and the hydrothermodynamical pictureen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationDepartamento de Fsica IGCE UNESP (Universidade Estadual Paulista), CP. 178, 13500-970 Rio Claro SP-
dc.description.affiliationInstituto de Fsica Gleb Wataghin UNICAMP (Universidade Estadual de Campinas), CP. 6165, 13083-970 Campinas, SP-
dc.description.affiliationUnespDepartamento de Fsica IGCE UNESP (Universidade Estadual Paulista), CP. 178, 13500-970 Rio Claro SP-
dc.identifier.doi10.1016/j.physa.2010.12.032-
dc.rights.accessRightsAcesso aberto-
dc.identifier.file2-s2.0-79952107797.pdf-
dc.relation.ispartofPhysica A: Statistical Mechanics and Its Applications-
dc.identifier.scopus2-s2.0-79952107797-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.