Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/72488
Título: 
Precipitates segmentation from scanning electron microscope images through machine learning techniques
Autor(es): 
Instituição: 
  • Universidade Estadual Paulista (UNESP)
  • University of Fortaleza
  • Federal University of Ceará
  • Universidade Estadual de Campinas (UNICAMP)
  • University of Porto
ISSN: 
  • 0302-9743
  • 1611-3349
Resumo: 
The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.
Data de publicação: 
2-Jun-2011
Citação: 
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6636 LNCS, p. 456-468.
Duração: 
456-468
Palavras-chaves: 
  • Hastelloy C-276
  • Metallic Precipitates Segmentation
  • Optimum-Path Forest
  • Scanning Electron Microscope
  • Support Vector Machines
  • Automatic identification
  • Bayesian classifier
  • Dissimilar welding
  • Machine learning techniques
  • Metallic material
  • Metallographic images
  • Recognition rates
  • Supervised pattern recognition
  • Automation
  • Durability
  • Electron microscopes
  • Image analysis
  • Learning algorithms
  • Pattern recognition
  • Scanning
  • Scanning electron microscopy
  • Self organizing maps
  • Support vector machines
  • Image segmentation
Fonte: 
http://dx.doi.org/10.1007/978-3-642-21073-0_40
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/72488
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.