You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/72488
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorPereira, Clayton R.-
dc.contributor.authorDe Albuquerque, Victor H. C.-
dc.contributor.authorSilva, Cleiton C.-
dc.contributor.authorFalcão, Alexandre X.-
dc.contributor.authorTavares, João Manuel R. S.-
dc.date.accessioned2014-05-27T11:25:54Z-
dc.date.accessioned2016-10-25T18:34:03Z-
dc.date.available2014-05-27T11:25:54Z-
dc.date.available2016-10-25T18:34:03Z-
dc.date.issued2011-06-02-
dc.identifierhttp://dx.doi.org/10.1007/978-3-642-21073-0_40-
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6636 LNCS, p. 456-468.-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttp://hdl.handle.net/11449/72488-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/72488-
dc.description.abstractThe presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.en
dc.format.extent456-468-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectHastelloy C-276-
dc.subjectMetallic Precipitates Segmentation-
dc.subjectOptimum-Path Forest-
dc.subjectScanning Electron Microscope-
dc.subjectSupport Vector Machines-
dc.subjectAutomatic identification-
dc.subjectBayesian classifier-
dc.subjectDissimilar welding-
dc.subjectMachine learning techniques-
dc.subjectMetallic material-
dc.subjectMetallographic images-
dc.subjectRecognition rates-
dc.subjectSupervised pattern recognition-
dc.subjectAutomation-
dc.subjectDurability-
dc.subjectElectron microscopes-
dc.subjectImage analysis-
dc.subjectLearning algorithms-
dc.subjectPattern recognition-
dc.subjectScanning-
dc.subjectScanning electron microscopy-
dc.subjectSelf organizing maps-
dc.subjectSupport vector machines-
dc.subjectImage segmentation-
dc.titlePrecipitates segmentation from scanning electron microscope images through machine learning techniquesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversity of Fortaleza-
dc.contributor.institutionFederal University of Ceará-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversity of Porto-
dc.description.affiliationDep. of Computing UNESP Univ Estadual Paulista, Bauru-
dc.description.affiliationCenter of Technological Sciences University of Fortaleza, Fortaleza-
dc.description.affiliationDep. of Materials and Metallurgical Engineering Federal University of Ceará-
dc.description.affiliationInstitute of Computing State University of Campinas, Campinas-
dc.description.affiliationFaculty of Engineering University of Porto, Porto-
dc.description.affiliationUnespDep. of Computing UNESP Univ Estadual Paulista, Bauru-
dc.identifier.doi10.1007/978-3-642-21073-0_40-
dc.identifier.wosWOS:000303500200040-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
dc.identifier.scopus2-s2.0-79957648069-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.