Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/72586
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ramos, Caio C. O. | - |
dc.contributor.author | Papa, João Paulo | - |
dc.contributor.author | Souza, André N. | - |
dc.contributor.author | Chiachia, Giovani | - |
dc.contributor.author | Falcão, Alexandre X. | - |
dc.date.accessioned | 2014-05-27T11:25:57Z | - |
dc.date.accessioned | 2016-10-25T18:34:16Z | - |
dc.date.available | 2014-05-27T11:25:57Z | - |
dc.date.available | 2016-10-25T18:34:16Z | - |
dc.date.issued | 2011-08-02 | - |
dc.identifier | http://dx.doi.org/10.1109/ISCAS.2011.5937748 | - |
dc.identifier.citation | Proceedings - IEEE International Symposium on Circuits and Systems, p. 1045-1048. | - |
dc.identifier.issn | 0271-4310 | - |
dc.identifier.uri | http://hdl.handle.net/11449/72586 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/72586 | - |
dc.description.abstract | Although non-technical losses automatic identification has been massively studied, the problem of selecting the most representative features in order to boost the identification accuracy has not attracted much attention in this context. In this paper, we focus on this problem applying a novel feature selection algorithm based on Particle Swarm Optimization and Optimum-Path Forest. The results demonstrated that this method can improve the classification accuracy of possible frauds up to 49% in some datasets composed by industrial and commercial profiles. © 2011 IEEE. | en |
dc.format.extent | 1045-1048 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Automatic identification | - |
dc.subject | Classification accuracy | - |
dc.subject | Data sets | - |
dc.subject | Feature selection algorithm | - |
dc.subject | Identification accuracy | - |
dc.subject | Non-technical loss | - |
dc.subject | Automation | - |
dc.subject | Classification (of information) | - |
dc.subject | Particle swarm optimization (PSO) | - |
dc.subject | Feature extraction | - |
dc.title | What is the importance of selecting features for non-technical losses identification? | en |
dc.type | outro | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.description.affiliation | Department of Electrical Engineering USP - University of São Paulo, São Paulo | - |
dc.description.affiliation | Department of Computing UNESP - São Paulo State University, Bauru, São Paulo | - |
dc.description.affiliation | Department of Electrical Engineering UNESP - São Paulo State University, Bauru, São Paulo | - |
dc.description.affiliation | Institute of Computing University of Campinas, São Paulo | - |
dc.description.affiliationUnesp | Department of Computing UNESP - São Paulo State University, Bauru, São Paulo | - |
dc.description.affiliationUnesp | Department of Electrical Engineering UNESP - São Paulo State University, Bauru, São Paulo | - |
dc.identifier.doi | 10.1109/ISCAS.2011.5937748 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Proceedings - IEEE International Symposium on Circuits and Systems | - |
dc.identifier.scopus | 2-s2.0-79960865826 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.