You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/72741
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNose-Filho, K.-
dc.contributor.authorLotufo, A. D P-
dc.contributor.authorMinussi, C. R.-
dc.date.accessioned2014-05-27T11:26:03Z-
dc.date.accessioned2016-10-25T18:34:51Z-
dc.date.available2014-05-27T11:26:03Z-
dc.date.available2016-10-25T18:34:51Z-
dc.date.issued2011-10-05-
dc.identifierhttp://dx.doi.org/10.1109/PTC.2011.6019428-
dc.identifier.citation2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011.-
dc.identifier.urihttp://hdl.handle.net/11449/72741-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/72741-
dc.description.abstractThis paper proposes a filter based on a general regression neural network and a moving average filter, for preprocessing half-hourly load data for short-term multinodal load forecasting, discussed in another paper. Tests made with half-hourly load data from nine New Zealand electrical substations demonstrate that this filter is able to handle noise, missing data and abnormal data. © 2011 IEEE.en
dc.language.isoeng-
dc.sourceScopus-
dc.subjectArtificial Neural Networks-
dc.subjectMoving Average Filter-
dc.subjectShort Term Load Forecasting-
dc.subjectSignal Processing-
dc.subjectTraining Dataset-
dc.subjectAbnormal data-
dc.subjectElectrical substations-
dc.subjectFilter-based-
dc.subjectGeneral regression neural network-
dc.subjectLoad data-
dc.subjectLoad forecasting-
dc.subjectMissing data-
dc.subjectMoving average filter-
dc.subjectNew zealand-
dc.subjectForecasting-
dc.subjectNeural networks-
dc.subjectSignal processing-
dc.subjectSustainable development-
dc.subjectElectric load forecasting-
dc.titlePreprocessing data for short-term load forecasting with a general regression neural network and a moving average filteren
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartment of Electrical Engineering College of Engineering of Ilha Solteira (UNESP), Ilha Solteira, SP-
dc.description.affiliationUnespDepartment of Electrical Engineering College of Engineering of Ilha Solteira (UNESP), Ilha Solteira, SP-
dc.identifier.doi10.1109/PTC.2011.6019428-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartof2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011-
dc.identifier.scopus2-s2.0-80053350091-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.