Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/72741
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nose-Filho, K. | - |
dc.contributor.author | Lotufo, A. D P | - |
dc.contributor.author | Minussi, C. R. | - |
dc.date.accessioned | 2014-05-27T11:26:03Z | - |
dc.date.accessioned | 2016-10-25T18:34:51Z | - |
dc.date.available | 2014-05-27T11:26:03Z | - |
dc.date.available | 2016-10-25T18:34:51Z | - |
dc.date.issued | 2011-10-05 | - |
dc.identifier | http://dx.doi.org/10.1109/PTC.2011.6019428 | - |
dc.identifier.citation | 2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011. | - |
dc.identifier.uri | http://hdl.handle.net/11449/72741 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/72741 | - |
dc.description.abstract | This paper proposes a filter based on a general regression neural network and a moving average filter, for preprocessing half-hourly load data for short-term multinodal load forecasting, discussed in another paper. Tests made with half-hourly load data from nine New Zealand electrical substations demonstrate that this filter is able to handle noise, missing data and abnormal data. © 2011 IEEE. | en |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Artificial Neural Networks | - |
dc.subject | Moving Average Filter | - |
dc.subject | Short Term Load Forecasting | - |
dc.subject | Signal Processing | - |
dc.subject | Training Dataset | - |
dc.subject | Abnormal data | - |
dc.subject | Electrical substations | - |
dc.subject | Filter-based | - |
dc.subject | General regression neural network | - |
dc.subject | Load data | - |
dc.subject | Load forecasting | - |
dc.subject | Missing data | - |
dc.subject | Moving average filter | - |
dc.subject | New zealand | - |
dc.subject | Forecasting | - |
dc.subject | Neural networks | - |
dc.subject | Signal processing | - |
dc.subject | Sustainable development | - |
dc.subject | Electric load forecasting | - |
dc.title | Preprocessing data for short-term load forecasting with a general regression neural network and a moving average filter | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Department of Electrical Engineering College of Engineering of Ilha Solteira (UNESP), Ilha Solteira, SP | - |
dc.description.affiliationUnesp | Department of Electrical Engineering College of Engineering of Ilha Solteira (UNESP), Ilha Solteira, SP | - |
dc.identifier.doi | 10.1109/PTC.2011.6019428 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | 2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011 | - |
dc.identifier.scopus | 2-s2.0-80053350091 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.