Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/72816
Título: 
A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach
Autor(es): 
Instituição: 
  • Universidade de São Paulo (USP)
  • Universidade Estadual Paulista (UNESP)
  • Universidade Federal de São Carlos (UFSCar)
ISSN: 
  • 0302-9743
  • 1611-3349
Resumo: 
The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.
Data de publicação: 
28-Nov-2011
Citação: 
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 7042 LNCS, p. 581-590.
Duração: 
581-590
Palavras-chaves: 
  • Classifier decisions
  • Decision graphs
  • Decision template
  • Ensemble of classifiers
  • Final decision
  • Forest classifiers
  • Game strategies
  • Markov Random Field model
  • Multiple classifier systems
  • Multiple classifiers systems
  • Random field model
  • Real data sets
  • Computer simulation
  • Computer vision
  • Forestry
  • Image segmentation
  • Pattern recognition systems
  • Classifiers
  • Computers
  • Image Analysis
  • OCR
  • Patterns
  • Random Processes
  • Segmentation
  • Simulation
  • Vision
Fonte: 
http://dx.doi.org/10.1007/978-3-642-25085-9_69
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/72816
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.