You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/72816
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPonti Jr., Moacir P.-
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorLevada, Alexandre L. M.-
dc.date.accessioned2014-05-27T11:26:11Z-
dc.date.accessioned2016-10-25T18:35:40Z-
dc.date.available2014-05-27T11:26:11Z-
dc.date.available2016-10-25T18:35:40Z-
dc.date.issued2011-11-28-
dc.identifierhttp://dx.doi.org/10.1007/978-3-642-25085-9_69-
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 7042 LNCS, p. 581-590.-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttp://hdl.handle.net/11449/72816-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/72816-
dc.description.abstractThe research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.en
dc.format.extent581-590-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectClassifier decisions-
dc.subjectDecision graphs-
dc.subjectDecision template-
dc.subjectEnsemble of classifiers-
dc.subjectFinal decision-
dc.subjectForest classifiers-
dc.subjectGame strategies-
dc.subjectMarkov Random Field model-
dc.subjectMultiple classifier systems-
dc.subjectMultiple classifiers systems-
dc.subjectRandom field model-
dc.subjectReal data sets-
dc.subjectComputer simulation-
dc.subjectComputer vision-
dc.subjectForestry-
dc.subjectImage segmentation-
dc.subjectPattern recognition systems-
dc.subjectClassifiers-
dc.subjectComputers-
dc.subjectImage Analysis-
dc.subjectOCR-
dc.subjectPatterns-
dc.subjectRandom Processes-
dc.subjectSegmentation-
dc.subjectSimulation-
dc.subjectVision-
dc.titleA Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approachen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.description.affiliationInstitute of Mathematical and Computer Sciences University of São Paulo (ICMC/USP), São Carlos, SP-
dc.description.affiliationDepartment of Computing UNESP - Univ. Estadual Paulista, Bauru, SP-
dc.description.affiliationComputing Department Federal University of São Carlos (DC/UFSCar), São Carlos, SP-
dc.description.affiliationUnespDepartment of Computing UNESP - Univ. Estadual Paulista, Bauru, SP-
dc.identifier.doi10.1007/978-3-642-25085-9_69-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
dc.identifier.scopus2-s2.0-81855226076-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.