Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/72853
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Papa, João Paulo | - |
dc.contributor.author | Rocha, Anderson | - |
dc.date.accessioned | 2014-05-27T11:26:14Z | - |
dc.date.accessioned | 2016-10-25T18:35:51Z | - |
dc.date.available | 2014-05-27T11:26:14Z | - |
dc.date.available | 2016-10-25T18:35:51Z | - |
dc.date.issued | 2011-12-01 | - |
dc.identifier | http://dx.doi.org/10.1109/ICIP.2011.6116475 | - |
dc.identifier.citation | Proceedings - International Conference on Image Processing, ICIP, p. 3525-3528. | - |
dc.identifier.issn | 1522-4880 | - |
dc.identifier.uri | http://hdl.handle.net/11449/72853 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/72853 | - |
dc.description.abstract | Different from the first attempts to solve the image categorization problem (often based on global features), recently, several researchers have been tackling this research branch through a new vantage point - using features around locally invariant interest points and visual dictionaries. Although several advances have been done in the visual dictionaries literature in the past few years, a problem we still need to cope with is calculation of the number of representative words in the dictionary. Therefore, in this paper we introduce a new solution for automatically finding the number of visual words in an N-Way image categorization problem by means of supervised pattern classification based on optimum-path forest. © 2011 IEEE. | en |
dc.format.extent | 3525-3528 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Image Categorization | - |
dc.subject | Local Interest Points | - |
dc.subject | Optimum Path Forest | - |
dc.subject | Visual Dictionaries | - |
dc.subject | Global feature | - |
dc.subject | Interest points | - |
dc.subject | Visual word | - |
dc.subject | Forestry | - |
dc.subject | Image processing | - |
dc.subject | Imaging systems | - |
dc.subject | Image Analysis | - |
dc.subject | Problem Solving | - |
dc.title | Image categorization through optimum path forest and visual words | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.description.affiliation | UNESP - Univ. Estadual Paulista, Bauru, SP | - |
dc.description.affiliation | University of Campinas (Unicamp), Campinas, SP | - |
dc.description.affiliationUnesp | UNESP - Univ. Estadual Paulista, Bauru, SP | - |
dc.identifier.doi | 10.1109/ICIP.2011.6116475 | - |
dc.identifier.wos | WOS:000298962503165 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Proceedings - International Conference on Image Processing, ICIP | - |
dc.identifier.scopus | 2-s2.0-84856297857 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.