Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/72863
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Valêncio, Carlos Roberto | - |
dc.contributor.author | De Medeiros, Camila Alves | - |
dc.contributor.author | Ichiba, Fernando Tochio | - |
dc.contributor.author | De Souza, Rogéria Cristiane Gratão | - |
dc.date.accessioned | 2014-05-27T11:26:14Z | - |
dc.date.accessioned | 2016-10-25T18:35:53Z | - |
dc.date.available | 2014-05-27T11:26:14Z | - |
dc.date.available | 2016-10-25T18:35:53Z | - |
dc.date.issued | 2011-12-01 | - |
dc.identifier | http://dx.doi.org/10.1109/PDCAT.2011.76 | - |
dc.identifier.citation | Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, p. 427-432. | - |
dc.identifier.uri | http://hdl.handle.net/11449/72863 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/72863 | - |
dc.description.abstract | The significant volume of work accidents in the cities causes an expressive loss to society. The development of Spatial Data Mining technologies presents a new perspective for the extraction of knowledge from the correlation between conventional and spatial attributes. One of the most important techniques of the Spatial Data Mining is the Spatial Clustering, which clusters similar spatial objects to find a distribution of patterns, taking into account the geographical position of the objects. Applying this technique to the health area, will provide information that can contribute towards the planning of more adequate strategies for the prevention of work accidents. The original contribution of this work is to present an application of tools developed for Spatial Clustering which supply a set of graphic resources that have helped to discover knowledge and support for management in the work accidents area. © 2011 IEEE. | en |
dc.format.extent | 427-432 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Database | - |
dc.subject | Geographic information system | - |
dc.subject | Spatial clustering | - |
dc.subject | Spatial data mining | - |
dc.subject | Work accidents | - |
dc.subject | Geographic information | - |
dc.subject | Distributed computer systems | - |
dc.subject | Hardware | - |
dc.subject | Geographic information systems | - |
dc.title | Spatial clustering applied to health area | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Depto. de Ciências de Computação e Estatística Universidade Estadual Paulista - Unesp, São José do Rio Preto | - |
dc.description.affiliationUnesp | Depto. de Ciências de Computação e Estatística Universidade Estadual Paulista - Unesp, São José do Rio Preto | - |
dc.identifier.doi | 10.1109/PDCAT.2011.76 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings | - |
dc.identifier.scopus | 2-s2.0-84856635878 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.